APPENDIX N

4699 Old Ironsides Drive, Suite 350 Santa Clara, CA 95054 (408) 246-4848 ganderson@swsv.com

TECHNICAL MEMORANDUM

DATE: August 21, 2025
TO: Carter Reiff, PE
FROM: Glen M. Anderson, PE

SUBJECT: Pacific Gateway – Water and Sewer Demands and System Requirements

Introduction

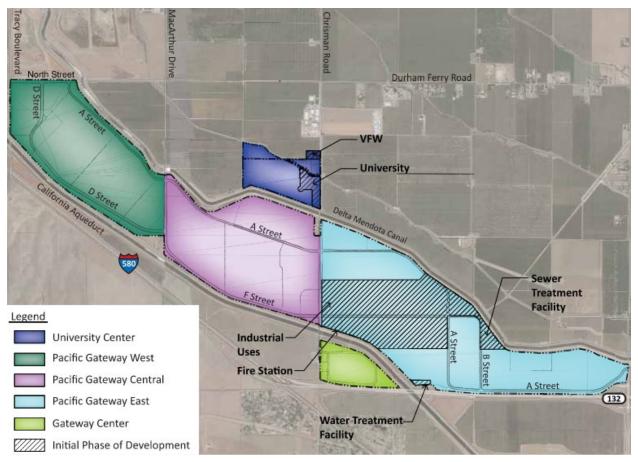
As part of the preliminary development plans for the Pacific Gateway development (Project), Kier & Wright has contracted Schaaf & Wheeler to establish required water demands for the proposed development, and to provide recommendations on water system requirements. This memorandum serves to provide estimated water requirements for the development as well as preliminary water system infrastructure requirements.

The Project consists of developing existing farmland into industrial usage, as well as the addition of a university. The Project will convert approximately 1,577 acres of existing agriculture land into a mixed-use, master planned development consisting of modern industrial facilities, a university, business park, general commercial and the VFW Tracy post. The property is located in San Joaquin County, south of the city of Tracy. The project is enclosed by Tracy Blvd. on the west, S Bird Rd. on the east, and is predominantly located between the California Aqueduct and the Delta Mendota Canal excepting the University, AB FAB, and VFW sites north of the Delta Mendota Canal, and a portion south of the California Aqueduct, and north of Highway 132. The project area is shown in Figure 1.

WATER DEMANDS

Domestic Water Demand

The San Joaquin Public Works (SJPW) Improvement Standard, Section 4-2.0, establishes that industrial development site water demands shall be set at levels of similar facilities, or a minimum of 1,800 gallons per day per acre (gpd/ac). The 1,800 gpd/ac water demand is inconsistent with, and substantially greater than, demand assumptions recently approved by the County for industrial developments. Following the County-approved demand patterns of nearby industrial developments and based on developer expectations of the reasonably foreseeable future uses within the proposed project, Schaaf & Wheeler has established a proposed average day demand of 10 gpd per 1,500 square feet of industrial building per shift and 10 gpd per 250 square feet of office space within the industrial development, per shift. For this project, it is assumed that industrial developments will work two shifts per day and that the industrial development is 95% warehouse and 5% office space.


For commercial parcels, the SJPW Improvement Standard requires 2,000 gpd/ac.

Schaaf & Wheeler assumed the University would accommodate an average of 600 students per day initially and 5,000 students per day at buildout, each generating an average day water demand of 12.81 gallons per day per student based upon research conducted. At buildout, 1,600 student beds are anticipated, bringing the total water use per day for those 1,600 students to 80 gallons per day.

The proposed development is in discussions to join the water system that currently serves Community Service Area 16 (CSA 16), to the south of the development. CSA 16 serves a total of 55 connections within

Par Country Estates and Hillside greens. An estimate of CSA 16's water demands is included in the water demand estimates, based on historic water use.

Due to the size of the Project, it is anticipated that construction will occur in phases. Refer to shading in Figure 1 indicating the initial phase of development.

^{*}Figure not OCR compatible

Figure 1. Project Area

Estimated building square footages are established for each of the areas identified. The estimated building size and associated average day water demands (ADD) for each area are summarized in Table 1.

The Maximum Day Demand (MDD) and Peak Hour Demand (PHD) are both essential when designing components of the overall water system for the project. Peaking factors of 2.2 (Maximum Day Demand) and 3.8 (Peak Hour Demand) were utilized from section 4-2.0 of the 2014 SJPW Standards.

Fire Water Demand

The expected fire flow demand requirements were established from the 2019 California Fire Code (CFC). With the large building sizes anticipated, a base fire flow of 8,000 gpm for 4 hours is assumed. However, it is presumed that the buildings will be equipped with fire suppression systems, that will allow for a significant reduction in fire flow to 2,000 gpm for 2 hours. To be conservative, the fire demand was set at 2,000 GPM for 4 hours. The final fire demand for the industrial warehouse buildings may be adjusted later in the planning process.

Table 1. Average Water Demands

		Initial Phase	Buildout	Initial Phase Water	Buildout Water	Initial Phase Water	Buildout Water
Area	Landuse	Area (SF)	Area (SF)	Demand (GPD)	Demand (GPD)	Demand (AFY)	Demand (AFY)
Pacific Gateway East	Industrial	3,962,000	11,124,274	66,033	185,405	74.0	207.7
Pacific Gateway Central	Industrial	0	6,856,474	0	114,275	0.0	128.0
Pacific Gateway West	Industrial	0	6,168,882	0	102,815	0.0	115.2
Gateway Center	Industrial	0	525,370	0	8,756	0.0	9.8
Gateway Center	Hotel/Commercial	0	109,592	0	5,032	0.0	5.6
University Center	University*	25,000	1,379,150	7,686	171,554	8.6	192.2
University Center	VFW**	11,500	11,500	528	528	0.6	0.6
University Center	Industrial	0	93,000	0	1,550	0.0	1.7
University Center	Commercial	0	38,908	0	1,786	0.0	2.0
CSA-16	Residential***	NA	NA	123,290	123,290	138.1	138.1
	Total	3,998,500	26,307,150	197,537	714,990	221.3	800.9

*University Assumes 600 students in first phase and 5,000 at buildout, with each student accounting for 12.81 GPD. Also assumes that 1,600 student beds are included at buildout with and additional water demand of 67.19 GPD per bed (80 GPD per bed total).

Irrigation Water Demand

The anticipated irrigation demand for the project site was estimated using the Estimated Total Water Use (ETWU) calculations. It is assumed that fifteen percent (15%) of the total area will be designated as Landscape Area (LA). Additionally, since the project intends to join CSA 16, the irrigation calculation should include the required irrigation for the Golf Course served by CSA 16. In Total, the estimated landscape area is approximately 314 acres. The evapotranspiration (ETo) of 48 inches is used for the project to match the nearby City of Tracy, as directed by the County. The Evapotranspiration Adjustment Factor (ETAF) is 0.45 (non-residential). Table 2 displays the irrigation demand for the development totaling 266.2 ac-ft/year. To determine these values the formula ETWU = (Et) X (0.62) X [(ETAF X LA)] was used.

Table 2. Estimated Irrigation Demand

Pacific Gateway Irrigation Demand Estimates							
Total Area	1577	Acres					
Landscape Area %	15	%					
Landscape Area	236.6	Acres					
Eto	48.4	in/year					
Eto	4.03	ft/year					
ETAF	0.45	unitless					
Irrigation Demand	266.2	ac-ft/year					

^{**}VFW treated as commercial

^{***} CSA-16 parcels presumed to be on Septic and treated at place of use. CSA-16 estimate is based on peak record water use for CSA-16.

To: Carter Reiff, PE May 9, 2025

WATER SUPPLY

Capacity

As previously discussed, the Project site is currently used for agricultural purposes, with much of the land used for growing almonds. Water for the existing site is supplied through existing groundwater wells and surface water turnouts. Documentation on the existing wells indicate capacities ranging from 50 gpm to 1,500 gpm.

According to the University of California Drought Management program, almond trees require between 41 and 54 inches of water per year. This translates to between 3.4 and 4.5 acre-feet per acre. The Project's current land owner has indicated that the properties are currently watered at a rate between 3.0 and 3.5 acre-feet per acre With one acre-foot being equivalent to 325,851 gallons, and assuming the low end of required watering, this is an average flow of 2,678 gpd/acre (1.86 gpm/acre). For the proposed development, the predevelopment water demand is estimated at approximately 3.63 million gallons per day. Post development water demand is estimated at approximately 0.49 million gallons per day – approximately 1/7th the existing use.

Domestic Water Sources

It is anticipated that the Project's domestic water needs could be met through surface water supplies from the Byron-Bethany Irrigation District (BBID), use of existing groundwater wells, development of new groundwater wells, or some combination of these. The Project is located near County Service Area 16 (CSA-16), and it is possible the Project could be added and physically connect to the service area of CSA-16.

The Project's water source(s) will require treatment for domestic use to meet drinking water standards. Domestic water will be provided to the proposed project through a dedicated domestic water system.

Fire Water Sources

It is anticipated that the Project's fire water needs will be met through the domestic sources previously listed or through the construction of up to two groundwater wells, constructed in accordance with the State's standards or through an untreated surface water turnout. If untreated water is used for fire protection, it will be provided to the proposed project through a dedicated fire water system. If treated water is to be used for fire protection, it can be supplied through the domestic water system within the proposed project.

Irrigation Water Sources

It is anticipated that the Project's irrigation water needs will be met through use of recycled water in combination with untreated surface water from BBID. Irrigation water will be provided to the proposed project through a dedicated recycled water system.

WATER SYSTEMS

Domestic Water System

To determine required pipe sizing, a pipe network was created in EPANET, and peak hour water demands were placed strategically at locations to simulate maximum water demands at potential building location. In addition to the pipes, approximate booster pump station and storage tank sizes were determined.

Preliminary pipe sizes were determined using the EPANET model and vary between 6-inch through 12-inch pipe within the project. If domestic water is used for fire protection, it is assumed that the pipelines will be sized to meet the required fire flows as discussed later in this memorandum.

In addition to the system pipeline, storage tank(s) will be required for the domestic water system. State standards require a minimum storage volume equivalent to 8 hours of the MDD, plus the required fire flow demand. Since the fire system is entirely separate from domestic system, the domestic system is only required to store 8 hours of MDD flow. Table 3 summarizes the Project's required domestic storage in million gallons (MG). While only approximately 520,000 gallons of storage is required for domestic purposes, dead storage within tanks and commonly available storage tank requirements lead Schaaf & Wheeler to recommend a minimum of 700,000 gallons of domestic storage. This storage may be split between two reservoirs, depending on project phasing and ultimate pressure zone configuration. A booster pump system will be installed adjacent to the storage tank(s) to supply water to the domestic system.

Initial Phase Buildout Initial Phase Water Buildout Water Area Landuse Area (SF) Area (SF) Storage (MG) Storage (MG) Pacific Gateway East Industrial 3,962,000 11,124,274 0.0484 0.1360 Pacific Gateway Central Industrial 0 6,856,474 0.0000 0.0838 0 6.168.882 0.0754 Pacific Gateway West Industrial 0.0000 0 Gateway Center Industrial 525,370 0.0000 0.0064 Hotel/Commercial 0 109,592 Gateway Center 0.0000 0.0037 **University Center** 25.000 0.1258 University* 1,379,150 0.0056 VFW** **University Center** 11,500 11,500 0.0004 0.0004 0 **University Center** Industrial 93.000 0.0000 0.0011 0 **University Center** Commercial 38,908 0.0000 0.0013 CSA-16 Residential*** NA NA 0.0904 0.0904 Total 3,998,500 26,307,150 0.1449 0.5243

Table 3. Required Domestic Storage

Fire Water System

Schaaf & Wheeler prepared a fire flow model, similar to the domestic model, using EPANET. The model revealed that for a fire flow of 2,000 gpm. 12-inch pipeline is sufficient.

As previously stated, the identified design fire flow assumed for this project is 2,000 gpm for a 4-hour duration. State standards require that the project store the fire flow, which will require 480,000 gallons of fire storage. Given dead volume within the storage tanks, it is estimated that a 600,000 gallon storage tank will be required. It may be possible to split this storage volume between multiple tanks, but a fire pump will be necessary at each tank location.

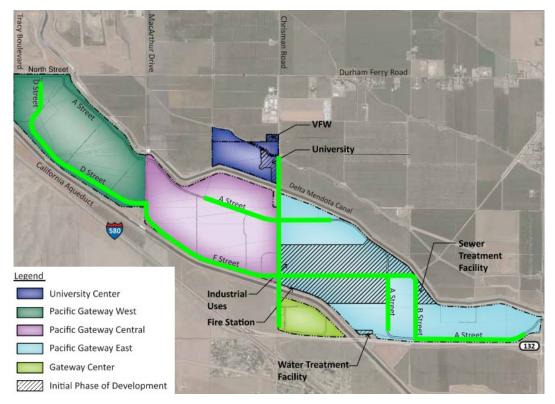
Irrigation Water System

^{*}University Assumes 600 students in first phase and 5,000 at buildout, with each student accounting for 12.81 GPD. Also assumes that 1,600 student beds are included at buildout with and additional water demand of 67.19 GPD per bed (80 GPD per bed total).

^{**}VFW treated as commercial

^{***} CSA-16 parcels presumed to be on Septic and treated at place of use. CSA-16 estimate is based on peak record water use for CSA-16.

Because little is known about the irrigation requirements at this time, no model has been created for the irrigation system. That said, because irrigation is a non-essential use, irrigation schedules can be adjusted to minimize system peaks and reduce system component size. It is estimated that 8-inch pipe will be sufficient to meet irrigation demands. The irrigation system will consist of a recycled water storage tank and booster station, located at the wastewater treatment plant.


WASTEWATER SYSTEMS

Sewage Collection System

The Project's wastewater will be collected from each parcel through a traditional wastewater gravity flow collection system that will be supplemented with lift stations at canal crossings and if dictated by the ultimate project design. Wastewater will be routed to the Project's wastewater treatment plant (WWTP), located at the south-eastern portion of the project. Figure 3 shows the conceptual layout of the collection system and the location of the WWTP.

Average day sewage flow is estimated to be 80% of the average daily potable water demand. Table 4 summarizes average daily sewage flow for the Project.

Manning's equation was used to generate a preliminary estimate of sewer pipe sizes within the project. It is estimated that 6-inch through 12-inch sewer pipes will be adequate for the Project. The Project's wastewater will be collected from each parcel through a traditional wastewater gravity flow collection system that will be supplemented with lift stations at canal crossings and if dictated by the ultimate project design. Wastewater will be routed to the Project's wastewater treatment plant (WWTP), located at the south-eastern portion of the project. Figure 3 shows the conceptual layout of the collection system and the location of the WWTP.

*Figure not OCR compatible Figure 3. Wastewater Collection System

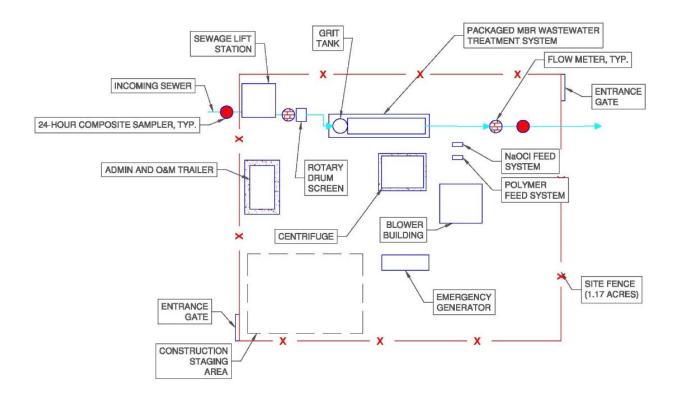
Table 4. Sewer Generation Rates

		Initial Phase	Buildout	Initial Phase Water	Buildout Water	Initial Phase Sewage	Buildout Sewage
Area	Landuse	Area (SF)	Area (SF)	Demand (GPD)	Demand (GPD)	Generation (GPD)	Generation (GPD)
Pacific Gateway East	Industrial	3,962,000	11,124,274	66,033	185,405	52,827	148,324
Pacific Gateway Central	Industrial	0	6,856,474	0	114,275	0	91,420
Pacific Gateway West	Industrial	0	6,168,882	0	102,815	0	82,252
Gateway Center	Industrial	0	525,370	0	8,756	0	7,005
Gateway Center	Hotel/Commercial	0	109,592	0	5,032	0	4,025
University Center	University*	25,000	1,379,150	7,686	171,554	6,149	137,243
University Center	VFW**	11,500	11,500	528	528	422	422
University Center	Industrial	0	93,000	0	1,550	0	1,240
University Center	Commercial	0	38,908	0	1,786	0	1,429
CSA-16	Residential***	NA	NA	123,290	123,290	98,632	98,632
	Total	3,998,500	26,307,150	197,537	714,990	59,398	473,360

*University Assumes 600 students in first phase and 5,000 at buildout, with each student accounting for 12.81 GPD. Also assumes that 1,600 student beds are included at buildout with and additional water demand of 67.19 GPD per bed (80 GPD per bed total).

Sewage Treatment System

The project WWTP will be centered around a packaged membrane bioreactor wastewater treatment system with ultraviolet light disinfection. The WWTP will be expandable to accommodate phased construction, up to buildout. An operating permit issued by the Central Valley Regional Water Control Board (CVRWQB) will establish operating, performance, and reporting requirements for on-site treatment and disposal facilities.


It is proposed that the wastewater be treated to the Disinfected Tertiary Recycled Water Standard, suitable for use throughout the project site to irrigate landscaping and/or the surrounding farms in the area. The WWTP is proposed to include the following components, in quantities corresponding to the level of buildout:

- 1. A flow equalization system (sewage pump station wet well).
- 2. Rotary drum screens for screenings removal.
- 3. Compactor for screenings disposal at landfill.
- 4. Packaged MBR-based waste water treatment train.
- 5. Recycled water disinfection system.
- 6. Recycled water pump station.
- 7. Diesel engine-driven emergency generator.
- 8. Ancillary supporting equipment, as required.

Figure 4 depicts a preliminary WWTP site plan.

^{**}VFW treated as commercial

^{***} CSA-16 parcels presumed to be on Septic and treated at place of use. CSA-16 estimate is based on peak record water use for CSA-16.

*Figure not OCR compatible

Figure 4. Preliminary WWTP Layout