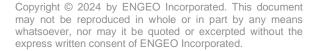


PACIFIC GATEWAY TRACY, CA

GEOTECHNICAL FEASABILITY UPDATE

SUBMITTED TO


Mr. Steve Arthur, Ridgeline Property Group, LLC 915 Highland Pointe Drive, Suite 250 Roseville, CA 95678

PREPARED BY

ENGEO Incorporated

September 13, 2024

PROJECT NO. 19633.000.002

Project No. **19633.000.002**

No. 2804

September 13, 2024

Mr. Steve Arthur Ridgeline Property Group, LLC 915 Highland Pointe Drive, Suite 250 Roseville, CA 95678

Subject: Pacific Gateway

Tracy, CA

GEOTECHNICAL FEASABILITY UPDATE

Dear Mr. Arthur:

We prepared this geotechnical feasibility update report for the proposed development located in Tracy, California, as outlined in our agreement with you, dated July 17, 2024. The accompanying geotechnical feasibility update compiles our field exploration findings, along with our conclusions and recommendations regarding development within the study area. We performed this feasibility study to identify basic geotechnical considerations for the development and potential geologic hazards within the project site.

The proposed development is feasible from a geotechnical engineering viewpoint, provided that subsurface explorations are performed at a future date to confirm the preliminary conclusions presented herein. Based on our feasibility study, the primary geotechnical considerations for the planned development include the potential for existing fill and expansive soil.

If you have any questions or comments regarding this report, please call and we will be glad to discuss them with you.

Sincerely,

ENGEO Incorporated

Viridiana Navarro,

vn/sh/dt

Steve Harris, GE, QSD

TABLE OF CONTENTS

LETTER OF TRANSMITTAL

1.0	INTR	ODUCT	TION				 1
1.1 PURPOSE AND SCOPE							 1
2.0	FIND	INGS					 2
	2.1	GEOLO	OGY AND	SEISMICITY			 2
		2.1.1 2.1.2	Geology	у			 2
	2.2			y \TION			
	2.2	2.2.1					
	2.3	LABOR	RATORY T	ESTING			
	2.4 2.5			DITIONS CONDITIONS			
	2.6			R CONDITIONS			
3.0	DISC	USSIOI	N AND C	CONCLUSIONS	3		 5
	3.1						
	3.2 3.3			L DS			
	0.0	3.3.1		Rupture			
		3.3.2	Ground S	Shaking			 6
	0.4	3.3.3	•	ion			
4.0	3.4			MIC DESIGN PAR			
4.0				ONITORING			
5.0				THWORK REC			
	5.1 5.2	SITE P	REPARAT OPTIMI IN	TION I SOIL MOISTURI	E CONDITION	S	
	5.3	ACCEF	TABLE F	ILL			 9
	5.4			ON			
		5.4.1 5.4.2		n Structural Areas ound Utility Backfill			
			5.4.2.1 5.4.2.2	General Structural Areas.			
	5.5	SITE D	RAINAGE				 1 ²
6.0	PREI	_IMINAI	RY FOU	NDATION REC	OMMENDA	ATIONS	 11
	6.1	BUILDI	NG PAD S	SUBGRADE PREF	PARATION		 1 1
	6.2 6.3			NSIONS AND ALL -ON-GRADE			
7.0				-ON-GRADE VEMENT DESI			
7.0							
	7.1	FLEXIE	SLE PAVE	MENTS			 13

TABLE OF CONTENTS (Continued)

	7.2 7.3	RIGID PAVEMENTSSUBGRADE AND AGGREGATE BASE COMPACTION	
	7.5	SOBORADE AND AGGREGATE BAGE GOINT ACTION	
8.0	DES	IGN-LEVEL GEOTECHNICAL REPORT	14
9.0	LIMI	TATIONS AND UNIFORMITY OF CONDITIONS	14
SEL	ECTE	REFERENCES	
FIG	JRES		
APP	ENDIX	A – Exploration Logs	
APP	ENDIX	B – Laboratory Test Data	
APP	ENDIX	C – Previous Exploration logs and Laboratory Test Results (ENGEO,2021)

1.0 INTRODUCTION

1.1 PURPOSE AND SCOPE

We prepared this geotechnical feasibility update report for the Pacific Gateway in Tracy, California. We prepared this report as outlined in our agreement dated July 17, 2024. ENGEO previously prepared a preliminary geotechnical exploration report for the property, which provided preliminary geotechnical recommendations based on the areas explored in 2021 (ENGEO,2021). Since the publication of the report, Ridgeline Property Group has acquired new property for the Pacific Gateway project. The new parcels acquired are identified as Assessor's Parcel Numbers (APNs) 253-190-110, 253-180-110, 253-180-060, 253-260-090, 253-260-120, 253-260-130, and 253-260-140.

The purpose of our report is to update the referenced report to include the additional parcels and provide a preliminary assessment of the geotechnical hazards pertinent to the current development and provide preliminary geotechnical recommendations for site development. Ridgeline Property Group authorized us to conduct the following scope of services.

- Review of available historical aerials and geologic maps
- Limited field exploration
- Limited soil sampling and laboratory testing
- Preliminary analysis and conclusions
- Report preparation

This report provides an assessment of geotechnical feasibility and does not provide design recommendations or design parameters; these items can be provided at a future date following supplemental subsurface exploration, sampling, lab testing, and engineering analysis once the project moves to the design phase.

In preparation of this report, we reviewed the previous preliminary geotechnical investigation report for the site, completed by ENGEO on November 30, 2021, and revised January 11, 2023.

We prepared this report for the exclusive use of our client and their consultants for evaluation of feasibility of this project. In the event that any changes are made in the character, design, or layout of the development, we must be contacted to review the conclusions and recommendations contained in this report to evaluate whether modifications are recommended. This document may not be reproduced in whole or in part by any means whatsoever, nor may it be quoted or excerpted without our express written consent.

1.2 PROJECT LOCATION AND DESCRIPTION

The proposed 1,433-acre Pacific Gateway project is located east of I-580, north of State Highway 132, and south of South Tracy Boulevard in Tracy, California, as shown in Figure 1. Based on our review of the provided information, we understand that Areas A, B, C, D, and E will be developed for industrial parks with warehouse and office structures, paved roadways and parking areas, and associated improvements. The conceptual site plan indicates 10 basins will be constructed throughout the site. The site will also include UofSA university campus, consisting of approximately 1.4 million square feet of university buildings and associated infrastructure. Based on our discussions with the project team, we understand the university buildings will be either glass over steel frame construction or concrete tilt-up construction.

Review of publicly available historical aerial photographs indicates that the property was utilized for agriculture, consisting of a mix of row crops, orchards, and dry land farming, since at least 1949. At the time of our site reconnaissance, the majority of the property consisted of active orchards and vineyards.

1.3 PREVIOUS EXPLORATION

ENGEO previously prepared a preliminary geotechnical investigation report (ENGEO, 2021) for the original property of Pacific Gateway. We performed our preliminary field exploration between November 11 and November 16, 2021. Our field exploration included drilling 6 borings and excavation of 15 test pits at various locations across the proposed development, shown on Site Plan, Figure 2.

In our preliminary study, undocumented fill was found in 7 of the 14 test pit locations. The undocumented fill encountered was limited to excavations within existing access roads. The undocumented fill ranged from $\frac{1}{2}$ to 2 feet in thickness.

2.0 FINDINGS

2.1 GEOLOGY AND SEISMICITY

2.1.1 Geology

The subject project in located within the margins of Great Valley and Coast Range Geomorphic Provinces of California. This valley is an elongate, asymmetric trough filled with a thick sequence of sediments beginning in the Jurassic period (180 million years ago) and continues currently. The sediments within the valley vary in thickness and are estimated to be up 10 km deep. These sediments are mostly derived from the erosion of the Sierra Nevada Mountain Range to the east, with lesser amounts of material from the Coast Range Mountains to the west.

As shown in Figure 3, Wagner (1991) mapped the project location as Holocene to Pleistocene aged alluvial fan deposits (Qf) consisting of unconsolidated gravel, sand, silt and clay in addition to Miocene to Pliocene fanglomerate deposits (Mf) consisting of conglomerates, siltstone, and sandstone primarily derived from the Coast Range to the southwest.

2.1.2 Seismicity

The site is located in an area of moderate seismicity. The site is not located within a currently designated Alquist-Priolo Earthquake Fault Zone and no known surface expressions of active faults¹ are believed to exist within the site. According to the 2008 National Seismic Hazard Maps Spatial Query, the two nearest earthquake faults zoned as active by the State of California Geological Survey are the Great Valley fault, located approximately 1 mile south, and the Greenville fault, located approximately 11.7 miles west. Other active faults in the region are summarized in the table below. Figure 4 shows the approximate locations of these faults and significant historic earthquakes recorded within the region.

¹ An active fault is defined by the State Mining and Geology Board as one that has had surface displacement within Holocene time (about the last 11,000 years) (California Geological Survey, 2007).

-

TABLE 2.1.2-1: Active Faults Capable of Producing Significant Ground Shaking at the Site

FAULT NAME	DISTANCE FROM SITE (miles)	DIRECTION FROM SITE	MAXIMUM MOMENT MAGNITUDE
Great Valley	1	South	6.9
Greenville Connected	12	West	7.0
Mount Diablo Thrust	24	West	6.7
Calaveras	26	West	7.0
Hayward-Rodgers Creek	29	West	7.3
Green Valley Connected	36	West	6.8

Portions of the Great Valley fault are considered seismically active blind thrust faults; however, since the Great Valley fault segments are not known to extend to the ground surface, the State of California has not defined Earthquake Fault Zones around postulated traces. The Great Valley fault is considered capable of causing significant ground shaking at the site, but the recurrence interval is believed longer than for more distant, strike-slip faults. Recent studies suggest that this boundary fault may have been the cause of the Vacaville-Winters earthquake sequence of April 1892 (Eaton, 1986; Wong and Biggar, 1989; Moores and others, 1991). Other large (>Mw7) earthquakes have historically occurred in the Bay Area to the west and along the margins of the Central Valley and many earthquakes of low magnitude occur every year.

2.2 FIELD EXPLORATION

We performed our preliminary field exploration on August 16, 2024. Our field exploration included drilling six borings at various locations across the site. The locations of our explorations are approximate and were estimated by utilizing smart phones equipped with GPS; they should be considered accurate only to the degree implied by the method used.

2.2.1 Borings

We observed drilling of six borings at the locations shown in the Site Plan, Figure 2. An ENGEO representative observed the drilling and logged the subsurface conditions at each location. We retained a truck-mounted drill rig and crew to advance the borings using 4½-inch-diameter solid-flight auger methods. The borings were advanced to a maximum depth of approximately 25 feet below existing grade.

Soil samples were collected at frequent intervals using either a 3-inch outside-diameter (O.D.) California-type split-spoon sampler fitted with 6-inch-long brass liners, or a 2-inch O.D. Standard Penetration Test (SPT) split-spoon sampler. The samplers were advanced with a 140-pound hammer with a 30-inch drop, employing a rope-and-cathead hammer system. The penetration of the sampler was field recorded as the number of blows needed to drive the sampler 18 inches in 6-inch increments. The boring logs show the number of blows required for the last 1 foot of penetration, or the number of blows per depth of penetration for samples that met driving refusal. The blow counts depicted on the boring logs have not been converted using any correction factors.

We used the field logs to develop the report logs in Appendix A. The logs depict subsurface conditions at the exploration locations for the date of exploration; however, subsurface conditions may vary with time.

2.3 LABORATORY TESTING

We performed laboratory tests on selected soil samples to evaluate their engineering properties. For this project, we performed unconfined compression testing, plasticity index, hydrometer, and sieve analysis. Select laboratory data is recorded on the exploration logs in Appendix A; other laboratory data is included in Appendix B.

2.4 SURFACE CONDITIONS

We observed the following site features during our 2024 site reconnaissance.

- The majority of the site consists of active orchards
- Vineyards were observed near Area C
- An approximate 1,500 feet long irrigational channel crosses the site near Area C, between the division of southern section of the orchard field and vineyard
- Two existing basins were observed throughout the site. One basin was located along South Chrisman Road and the other existing basin was observed north of the perimeter of Area C.
- A large stockpile of almonds was observed in Area C
- Distribution lines were observed along the perimeter of the property parallel to the Delta Mendota Canal
- Pipeline markers for existing, underground oil and gas lines (Phillips 66 Pipeline LLC Crude Oil, Pacific Gas & Electric Company – Natural Gas, Crimson Pipeline L.P. – Crude Oil) were observed across the site in Areas C, B, D, trending northwest to southeast.
- Various irrigation features are located along perimeters of site and within orchards
- Water containers observed near the north eastern perimeter of the site in Area C
- Existing residential structures were observed near the southwest perimeter of Area A along South MacArthur Drive, and in Area B along South Chrisman Road

Please refer to the Site Plan, Figure 2, for more information on site features.

2.5 SUBSURFACE CONDITIONS

Based on our preliminary field exploration, the site consists of a surficial layer of lean to fat clay underlain by lean clay with sand, sandy lean clay to silt and sandy silt. We encountered interbedded layers of silty sand, poorly graded sand with silt, and silty sand with gravel clay at depths ranging from 9 to 20 feet below the ground surface in borings. Based on our limited laboratory testing, the surficial soil samples we analyzed consisted of moderate to highly expansive clay with plasticity index (PI) values ranging from 12 to 30.

Consult the Site Plans and exploration logs for specific subsurface conditions at each location. We include our exploration logs in Appendix A. The logs contain the soil type, color, consistency, and visual classification in general accordance with the Unified Soil Classification System. The logs graphically depict the subsurface conditions encountered at the time of exploration.

2.6 GROUNDWATER CONDITIONS

We did not observe static or perched groundwater in any of our subsurface explorations. Our review of publicly available data for groundwater wells in the immediate vicinity of the site indicates that groundwater is greater than 50 feet below the existing grade. Fluctuations in the level of groundwater may occur due to variations in rainfall, irrigation practice, and other factors not evident at the time measurements were made.

3.0 DISCUSSION AND CONCLUSIONS

Based on our review of existing information and limited field exploration, the primary geotechnical concerns that could affect development of the site are potential existing fill and expansive soil. We summarize our conclusions below.

3.1 EXISTING FILL

We did not encounter undocumented or non-engineered fills during our 2024 exploration. However, given the past explorations performed in 2021 (ENGEO, 2021) and history of the site, we expect existing fill to be present.

The undocumented fill encountered in 2021 ranged from ½ to 2 feet in thickness. We expect that a surficial layer of undocumented fill exists along the majority of the access roads throughout the site. We also expect that there is some amount of existing fill adjacent to the existing structures noted in Section 2.4. Based on our limited field exploration and records review, we expect that the undocumented is limited to these areas.

Without documentation regarding the manner of placement, type of material used, and degree of compaction, existing fill encountered at the site should be considered non-engineered. Non-engineered fill can undergo excessive settlement, especially under new fill or building loads. The approximate extent of undocumented fill at the site should be further investigated during a design-level geotechnical exploration. Refer to Section 5.1 for preliminary recommendations regarding existing fill.

3.2 EXPANSIVE SOIL

As discussed in Section 2.5, our limited soil sampling and laboratory testing indicated the near-surface site soil exhibits moderate to high expansion potential.

Expansive soil can change in volume with changes in moisture. It can shrink or swell and cause heaving and cracking of slabs-on-grade, pavements, and structures founded on shallow foundations. Building damage due to volume changes associated with expansive soil can be reduced by: (1) using a rigid mat foundation that is designed to resist the settlement and heave of expansive soil, (2) deepening the foundations to below the zone of moisture fluctuation, i.e. by using deep footings or drilled piers, and/or (3) using footings at normal shallow depths but bottomed on a layer of select fill having a low expansion potential.

To reduce the potential for damage to the planned buildings, we recommend that the upper 18 inches of the building pad, extending at least 5 feet laterally beyond the building pad, be underlain by fill with low expansion potential (PI<12). This may be achieved by either importing material with low expansion potential or chemically stabilizing the native material on site.

We have also provided specific grading recommendations for compaction of clay soil at the site. The purpose of these recommendations is to reduce the swell potential of the clay by compacting the soil at a high moisture content and controlling the amount of compaction. Expansive soil mitigation recommendations are presented in Section 4.1 of this report.

Preliminary grading recommendations for compaction of expansive soil at the site is included in Section 5.0. Preliminary foundation design recommendations are provided in Section 6.0.

3.3 SEISMIC HAZARDS

Potential seismic hazards resulting from a nearby moderate to major earthquake can generally be classified as primary and secondary. The primary effect is ground rupture, also called surface faulting. The common secondary seismic hazards include ground shaking and ground lurching. The following sections present a discussion of these hazards as they apply to the site. Based on topographic and lithologic data, the risk of regional subsidence or uplift, soil liquefaction, lateral spreading, landslides, tsunamis, flooding or seiches is considered low to negligible at the site.

3.3.1 Ground Rupture

Since there are no known active faults crossing the property and the site is not located within an Earthquake Fault Special Study Zone, it is our opinion that ground rupture is unlikely at the subject property.

3.3.2 Ground Shaking

An earthquake of moderate to high magnitude generated within the San Francisco Bay region could cause considerable ground shaking at the site, similar to that which has occurred in the past. To mitigate the shaking effects, structures should be designed using sound engineering judgment and the latest California Building Code (CBC) requirements, as a minimum. Seismic design provisions of current building codes generally prescribe minimum lateral forces, applied statically to the structure, combined with the gravity forces of dead and live loads. The code-prescribed lateral forces are generally considered to be substantially smaller than the comparable forces that would be associated with a major earthquake. Therefore, structures should be able to: (1) resist minor earthquakes without damage, (2) resist moderate earthquakes without structural damage but with some nonstructural damage, and (3) resist major earthquakes without collapse but with some structural as well as nonstructural damage. Conformance to the current building code recommendations does not constitute any kind of guarantee that significant structural damage would not occur in the event of a maximum magnitude earthquake; however, it is reasonable to expect that a well-designed and well-constructed structure will not collapse or cause loss of life in a major earthquake (SEAOC, 1996).

3.3.3 Liquefaction

Soil liquefaction results from loss of strength during cyclic loading, such as imposed by earthquakes. Soil most susceptible to liquefaction is clean, loose, saturated, uniformly graded, fine-grained sand. We encountered poorly graded sand with silt in boring 2-B5, however the sand encountered in other borings often contained a significant amount of fine-grained material and were medium dense. In addition, groundwater was not encountered to the terminal depth of our borings. For these reasons and based upon engineering judgment, it is our opinion on a preliminary basis that the potential for liquefaction at the site is low during seismic shaking. This should be studied further with additional explorations and analysis during a design-level study.

3.4 2022 CBC SEISMIC DESIGN PARAMETERS

The 2022 CBC utilizes seismic design criteria established in the ASCE/SEI Standard "Minimum Design Loads and Associated Criteria for Buildings and Other Structures," (ASCE 7-16). Based on the subsurface conditions encountered, we characterized the site as Site Class D.

ASCE 7-16 requires a site-specific ground-motion hazard analysis for Site Class D sites with a mapped S_1 value greater than or equal to 0.2. However, Section 11.4.8 of ASCE 7-16 and Supplement No. 3 provide an exception to this requirement. A site-specific ground-motion hazard analysis is not required where the value of the parameter S_{M1} determined by Equation 11.4-2 and shown in Table 1 is increased by 50 percent for developing the mapped Risk-Targeted Maximum Considered Earthquake (MCE_R) spectral response, calculating S_{D1} , and evaluating C_{S} in accordance with Chapter 12 of ASCE 7-16.

In Table 3.4-1 below, we provide the CBC seismic parameters based on the United States Geological Survey's (USGS') Seismic Design Maps for your use. When using this table, considerations should be given to exceptions in Section 11.4.8 of ASCE 7-16, as described in this report.

TABLE 3.4-1: 2022 CBC Seismic Design Parameters, Latitude: 37.64872 Longitude: -121.3987

PARAMETER	VALUE
Site Class	D
Mapped MCE _R Spectral Response Acceleration at Short Periods, S _S (g)	1.270
Mapped MCE _R Spectral Response Acceleration at 1-second Period, S ₁ (g)	0.435
Site Coefficient, Fa	1.00
Site Coefficient, F _v	1.865*
MCE _R Spectral Response Acceleration at Short Periods, S _{MS} (g)	1.270
MCE _R Spectral Response Acceleration at 1-second Period, S _{M1} (g)	0.811*
Design Spectral Response Acceleration at Short Periods, S _{DS} (g)	0.847
Design Spectral Response Acceleration at 1-second Period, S _{D1} (g)	0.541*
Mapped MCE Geometric Mean (MCE _G) Peak Ground Acceleration, PGA (g)	0.535
Site Coefficient, F _{PGA}	1.1
MCE _G Peak Ground Acceleration adjusted for Site Class effects, PGA _M (g)	0.589
Long period transition-period, T _L (sec)	8

^{*}The parameters above should only be used for calculation of T_s , determination of Seismic Design Category, and, when taking the exceptions under Items 1 and 2 of ASCE 7-16 Section 11.4.8. (Supplement Number 3 https://ascelibrary.org/doi/epdf/10.1061/9780784414248.sup3).

We recommend that we collaborate with the structural engineer of record to further evaluate the effects of taking the exception on the structural design and identify the need for performing a site-specific ground-motion hazard analysis. We can prepare a proposal for a site-specific ground-motion hazard analysis, if requested.

4.0 CONSTRUCTION MONITORING

Our experience and that of our profession clearly indicate that the risk of costly design, construction, and maintenance problems can be significantly lowered by retaining the design geotechnical engineering firm to:

- Review the final grading and foundation plans and specifications prior to construction to evaluate whether our recommendations have been implemented, and to provide additional or modified recommendations, as needed. This also allows us to check if any changes have occurred in the nature, design or location of the proposed improvements and provides the opportunity to prepare a written response with updated recommendations.
- 2. Perform construction monitoring to check the validity of the assumptions we made to prepare this report. Earthwork operations should be performed under the observation of our representative to check that the site is properly prepared, the selected fill materials are satisfactory, and that placement and compaction of the fill has been performed in accordance with our recommendations and the project specifications. Sufficient notification to us prior to earthwork is important.

If we are not retained to perform the services described above, then we are not responsible for any party's interpretation of our report and subsequent addenda, letters, and verbal discussions.

5.0 PRELIMINARY EARTHWORK RECOMMENDATIONS

As used in this report, relative compaction refers to the in-place dry unit weight of soil expressed as a percentage of the maximum dry unit weight of the same soil, as determined by the ASTM D1557 laboratory compaction test procedure, latest edition. Compacted soil is not acceptable if it is unstable; it should exhibit only minimal flexing or pumping, as observed by an ENGEO representative.

The term "moisture condition" refers to adjusting the moisture content of the soil by either drying if too wet or adding water if too dry. We define "structural areas" as any area sensitive to settlement of compacted soil. These areas include, but are not limited to building pads, sidewalks, pavement areas, and retaining walls.

The following recommendations should be considered preliminary and should be verified in a design-level report.

5.1 SITE PREPARATION

Site development will commence with the general clearing of the site and the excavation and removal of buried structures. Areas to be developed should be cleared of all surface and subsurface deleterious materials, including existing structures and associated foundation systems, buried utilities and irrigation lines, septic systems, debris, and designated fencing, trees, shrubs, and associated roots. All debris should be removed from any location to be graded and from areas to receive fill or structures. The depth of removal of such materials should be determined by our representative in the field at the time of grading.

All undocumented fills encountered during grading, including fill placed during our exploratory test pits, should be removed to competent native soil, as determined in the field by ENGEO. We expect that in the locations where there are existing structures, we will need to overexcavate 2 feet of

material and rip and additional 12 inches to confirm that all pipes, foundations, and debris are removed. The subexcavation area should extend approximately 10 feet beyond the footprints of the existing structures. Additional subexcavation may be required based on our field observations. Provided the excavated soil is free from debris, it can be placed back as engineered fill.

Existing vegetation should be removed from areas to receive fill or improvements. Tree roots should be removed down to a depth of approximately 2 feet below existing grade. Once the orchards are removed, we will need to overexcavate approximately 12 inches of material and rip and additional 12 inches to mitigate the areas disturbed by removing the orchards.

All excavations from demolition and clearing below design grades should be cleaned to a firm undisturbed native soil surface determined by our representative. This surface should then be scarified, moisture conditioned, and backfilled with compacted engineered fill, in accordance with Section 5.4.

5.2 OVER-OPTIMUM SOIL MOISTURE CONDITIONS

The contractor should anticipate encountering excessively over-optimum (wet) soil moisture conditions during winter or spring grading, or during or following periods of rain. Wet soil can make proper compaction difficult or impossible. Wet soil conditions can be mitigated by:

- 1. Frequent spreading and mixing during warm dry weather,
- 2. Mixing with drier materials,
- 3. Mixing with a lime and/or cement product, or
- 4. Stabilizing with aggregate or geotextile stabilization fabric, or both.

Options 3 and 4 should be evaluated by ENGEO prior to implementation.

5.3 ACCEPTABLE FILL

On-site soil may be suitable as fill material provided it is processed to remove concentrations of organic material, debris, and particles greater than 8 inches in maximum dimension.

Imported fill materials should meet the above requirements and have a plasticity index equal to or less than the on-site material. If nonexpansive material is imported for the building pads, it should have a plasticity index of less than 12. Allow ENGEO to sample and test proposed imported fill materials at least 5 days prior to delivery to the site.

5.4 FILL COMPACTION

5.4.1 Grading in Structural Areas

Perform subgrade compaction prior to fill placement, following cutting operations, and in areas left at grade as follows.

- 1. Scarify to a depth of at least 12 inches.
- 2. Moisture condition soil to at least 3 percentage points over the optimum moisture content for expansive soil (PI ≥ 12) and to at least 1 percentage point over the optimum moisture content for soil with low expansion potential (PI < 12).

3. Compact the soil to between 90 percent relative compaction. Prior to aggregate base placement, compact the upper 6 inches of finish pavement subgrade to at least 92 percent relative compaction for expansive soil or at least 95 percent relative compaction for soil with low expansion potential.

After the subgrade has been compacted, place and compact acceptable fill as follows.

- 1. Spread fill in loose lifts that do not exceed 12 inches.
- 2. Moisture condition soil to at least 3 percentage points over the optimum moisture content for expansive soil (PI ≥ 12) and to at least 1 percentage point over the optimum moisture content for soil with low expansion potential (PI < 12).
- 3. Compact fill to between 90 percent relative compaction. Prior to aggregate base placement, compact the upper 6 inches of finish pavement subgrade to at least 92 percent relative compaction for expansive soil or at least 95 percent relative compaction for soil with low expansion potential.

Compact the pavement Caltrans Class 2 aggregate base section to at least 95 percent relative compaction (ASTM D1557). Moisture condition aggregate base to or slightly above the optimum moisture content prior to compaction.

Where lime or cement treatment of the soil is used to mitigate expansive soil conditions, we recommend the type of chemical admixture (lime, quicklime, or cement) and percentage of chemical additive be based on testing of actual foundation soil after mass grading is substantially completed. Based on our experience, on a preliminary basis we estimate that chemical treatment with approximately 4 percent lime (by dry unit weight) may be appropriate to reduce the plasticity of the on-site soil. The soil should be moisture conditioned to at least 3 percentage points above the optimum moisture content before mixing. The mixing should be performed in accordance with the current version of Caltrans Standard Specifications with the following exceptions.

- 1. Following mixing, the treated soil should be allowed to fully hydrate prior to compaction.
- 2. Following hydration, the treated soil should compacted according to ASTM D1557 to at least 95 percent relative compaction at, or slightly above, the optimum moisture content.

We recommend that the chemical treatment be performed by a specialty contractor experienced in this type of work.

5.4.2 Underground Utility Backfill

5.4.2.1 General

The contractor is responsible for conducting trenching and shoring in accordance with Cal/OSHA requirements. Project consultants involved in utility design should specify pipe bedding materials.

5.4.2.2 <u>Structural Areas</u>

Place and compact trench backfill as follows.

1. Trench backfill should have a maximum particle size of 6 inches.

- 2. Moisture condition trench backfill to a minimum of 3 percent above the optimum moisture content. Moisture condition backfill outside the trench.
- 3. Place fill in loose lifts not exceeding 12 inches.
- 4. Compact fill to 90 percent minimum relative compaction.

Where utility trenches cross underneath buildings, we recommend that a plug be placed within the trench backfill to help prevent the normally granular bedding materials from acting as a conduit for water to enter beneath the building. The plug should be constructed using a sand cement slurry (minimum 28-day compressive strength of 500 psi) or relatively impermeable native soil for pipe bedding and backfill. We recommend that the plug extend for a distance of at least 3 feet in each direction from the point where the utility enters the building perimeter.

Jetting of backfill is not an acceptable means of compaction.

5.5 SITE DRAINAGE

The project civil engineer is responsible for designing surface drainage improvements. With regard to geotechnical engineering issues, we recommend that finish grades be sloped away from buildings and pavements to the maximum extent practical to reduce the potentially damaging effects of expansive soil. As a minimum, we recommend the following.

- 1. Discharge roof downspouts into closed conduits and direct away from foundations and pavements to appropriate drainage devices.
- 2. Do not allow water to pond near foundations, pavements, or exterior flatwork.

6.0 PRELIMINARY FOUNDATION RECOMMENDATIONS

It is anticipated that the proposed development will consist of concrete tilt-up warehouse structures and university buildings consisting of either glass over steel frame construction or concrete tilt-up construction. Based on our limited field exploration, laboratory testing, and engineering analysis, we recommend that the proposed buildings be supported on continuous or isolated spread footing foundation systems with slab-on-grade floors bearing in compacted subgrade with low expansion potential.

We developed preliminary structural improvement recommendations using data obtained from our limited field exploration and laboratory test results. The following recommendations should be considered preliminary and should be verified in a design-level report.

6.1 BUILDING PAD SUBGRADE PREPARATION

We recommend the upper 18 inches of the building pad, and to at least 5 feet laterally beyond, should consist of imported low-expansive fill with a Plasticity Index less than 12. Alternatively, the upper 18 inches of the finished building pad, and to at least 5 feet laterally beyond, can be chemically treated to reduce the plasticity of site soil.

If chemical treatment is selected as an alternative to importing low-expansive fill for building pad construction, the type of chemical admixture (lime, quicklime, or cement) and percentage of chemical additive should be based on testing of actual foundation soil after mass grading is substantially completed. Based on our experience, on a preliminary basis, we estimate that

chemical treatment with approximately 4 percent lime (by dry unit weight) may be appropriate to reduce the plasticity of on-site soil. Chemical treatment should be performed by a specialty contractor experienced in this type of work. In addition, excavations performed in chemically treated soil, such as for utility trenches, should be stockpiled and protected for reuse in the upper backfill area to match the treated section.

6.2 FOOTING DIMENSIONS AND ALLOWABLE BEARING CAPACITY

Preliminary minimum footing dimensions are presented in Table 6.2-1 below.

TABLE 6.2-1: Preliminary Minimum Footing Dimensions

FOOTING TYPE	MINIMUM DEPTH (inches)	MINIMUM WIDTH (inches)
Continuous	24	12
Isolated	24	24

Minimum footing depths shown above are taken from the lowest adjacent pad grade.

On a preliminary basis, conventional footing foundations can be designed for a maximum allowable bearing pressure of 2,000 pounds per square foot (psf) for dead-plus-live loads. Increase this bearing capacity by one-third for the short-term effects of wind or seismic loading.

The maximum allowable bearing pressure is a net value; the weight of the footing may be neglected for design purposes. All footings located adjacent to utility trenches should have their bearing surfaces below an imaginary 1:1 (horizontal:vertical) plane projected upward from the bottom edge of the trench to the footing.

A subgrade modulus can be provided in a design-level geotechnical report.

6.3 INTERIOR SLAB-ON-GRADE

We anticipate that the operation of the warehouse facilities will include forklift and rack loads on the interior concrete slab. While no loading information was provide for our review, we developed our preliminary recommendations assuming a lightly loaded industrial concrete floor. This would include only small racks and forklifts.

As previously discussed, due to the expansive nature of the onsite material, the interior slabs should be underlain by 18 inches of low expansive imported material or chemically treated native material. Interior concrete floors that will support forklift or rack loads should be underlain by 6 inches of granular base having an R-value of at least 50 and a Plasticity Index less than 12. The base should be compacted to at least 95 percent relative compaction (ASTM D1557) to provide firm, uniform support for the slab-on-grade. These 6 inches of base may be considered part of the low expansive fill recommended in Section 5.4 of this report.

Prior to construction of the slab, the surface should be proof-rolled with heavy equipment to check that the base material is uniformly compacted and does not deflect under equipment loads. Prior to placing the base material, the building subgrade should be prepared in accordance with Section 5.0.

The slab thickness and reinforcement should be designed by the structural engineer based on the intended use and loading of the slab.

Post-construction cracking of concrete slabs-on-grade is inherent in any project, especially where soil expansion potential is high. Adequate slab reinforcement should be provided to satisfy the anticipated use and loading requirements.

When buildings are constructed with concrete slab-on-grade, water vapor from beneath the slab will migrate through the slab and into the building. This water vapor can be reduced but not stopped. Vapor transmission can negatively affect floor coverings and lead to increased moisture within a building. When water vapor migrating through the slab would be undesirable, we recommend the following to reduce, but not stop, water vapor transmission upward through the slab-on-grade.

- 1. Install a vapor retarder membrane directly beneath the slab. Seal the vapor retarder at all seams and pipe penetrations. Vapor retarders shall conform to Class A vapor retarder in accordance with ASTM E 1745, latest edition, "Standard Specification for Plastic Water Vapor Retarders used in Contact with Soil or Granular Fill under Concrete Slabs."
- 2. Use a concrete water-cement ratio for slabs-on-grade of no more than 0.50.
- 3. Provide inspection and testing during concrete placement to check that the proper concrete and water cement ratio are used.
- 4. Moist cure slabs for a minimum of 3 days or use other equivalent curing specified by the structural engineer.

7.0 PRELIMINDARY PAVEMENT DESIGN

7.1 FLEXIBLE PAVEMENTS

Based on our limited field exploration and laboratory testing, we determined an R-Value of 5 to be appropriate for untreated native soil.

Using estimated traffic indexes for various pavement loading requirements, we developed the following recommended pavement sections using Topic 633 of the Caltrans Highway Design Manual (including the asphalt factor of safety). The recommendations in Table 7.1-1 should be considered preliminary and should be verified in a design-level report.

TABLE 7.1-1: Preliminary Asphalt Concrete Pavement Section Recommendations

TRAFFIC INDEX	ASPHALT CONCRETE (inches)	CLASS 2 AB (inches) NO LIME TREATMENT OF SUBGRADE
5	3	10
6	3½	13
7	4	16
8	5	18
9	5½	21
10	6½	23
11	7	26
12	8	28

The civil engineer should determine the appropriate traffic indexes based on the estimated traffic loads and frequencies.

7.2 RIGID PAVEMENTS

We developed the preliminary rigid pavement sections in accordance with the methods contained in the Guide for the Design and Construction of Concrete Parking Lots, based on ACI 330R-08. Table 7.2-1 presents recommended PCCP and aggregate base (AB) thicknesses for various allowable Average Daily Truck Traffic (ADTT) indices that correspond to R-values of 5 for untreated subgrade and the use of concrete with a Modulus of Rupture equal to 500 psi, which corresponds to a compressive strength of approximately 4,000 psi.

TABLE 7.2-1: Preliminary Concrete Pavement Section Recommendations, Class 2 AB

		SECTIO	N
ADTT	AXLE CATEGORY	PCCP (INCHES) NO LIME TREATMENT OF SUBGRADE	CLASS 2 AB (INCHES)
100	С	7.0	6
300	С	7.5	6
700	D	8.5	6

7.3 SUBGRADE AND AGGREGATE BASE COMPACTION

Compact finish subgrade and aggregate base in accordance with Section 5.4. Aggregate Base should meet the requirements for ¾-inch maximum Class 2 AB in accordance with Section 26-1.02B of the latest Caltrans Standard Specifications.

8.0 DESIGN-LEVEL GEOTECHNICAL REPORT

This report presents preliminary geotechnical findings, conclusions and recommendations intended for preliminary planning purposes only. A design-level geotechnical exploration and assessment should be performed when development plans are available. The design-level geotechnical report should further discuss topics presented in this report and address the following items.

- Field exploration and laboratory testing to support design-level recommendations based on the actual development layout.
- Design-level analyses related to geologic and geotechnical hazards.
- Design-level earthwork, improvements, and construction recommendations.

9.0 LIMITATIONS AND UNIFORMITY OF CONDITIONS

This report presents geotechnical recommendations for design of the improvements discussed in Section 1.3 for the Pacific Gateway project. If changes occur in the nature or design of the project, we should be allowed to review this report and provide additional recommendations, if any. It is the responsibility of the owner to transmit the information and recommendations of this report to the appropriate organizations or people involved in design of the project, including but not limited to developers, owners, buyers, architects, engineers, and designers. The conclusions and

recommendations contained in this report are solely professional opinions and are valid for a period of no more than 2 years from the date of report issuance.

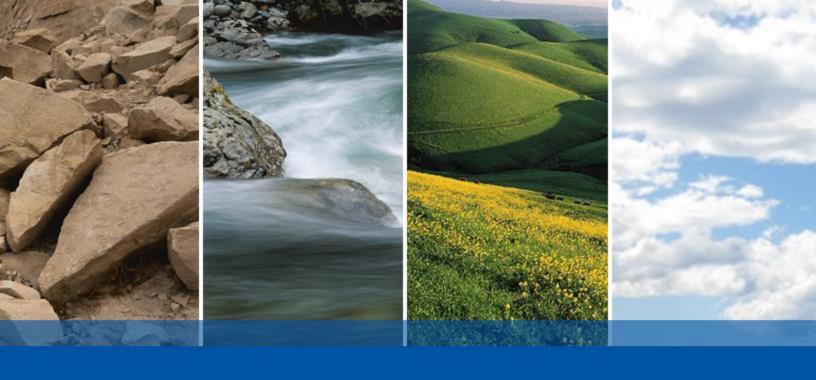
We strive to perform our professional services in accordance with generally accepted principles and practices currently employed in the area; there is no warranty, express or implied. There are risks of earth movement and property damages inherent in building on or with earth materials. We are unable to eliminate all risks; therefore, we are unable to guarantee or warrant the results of our services.

This report is based upon field and other conditions discovered at the time of report preparation. We developed this report with limited subsurface exploration data. We assumed that our subsurface exploration data are representative of the actual subsurface conditions across the site. Considering possible underground variability of soil and groundwater, additional costs may be required to complete the project. We recommend that the owner establish a contingency fund to cover such costs. If unexpected conditions are encountered, ENGEO must be notified immediately to review these conditions and provide additional and/or modified recommendations, as necessary.

Our services did not include excavation sloping or shoring, soil volume change factors, flood potential, or a geohazard exploration. In addition, our geotechnical exploration did not include work to determine the existence of possible hazardous materials. If any hazardous materials are encountered during construction, the proper regulatory officials must be notified immediately.

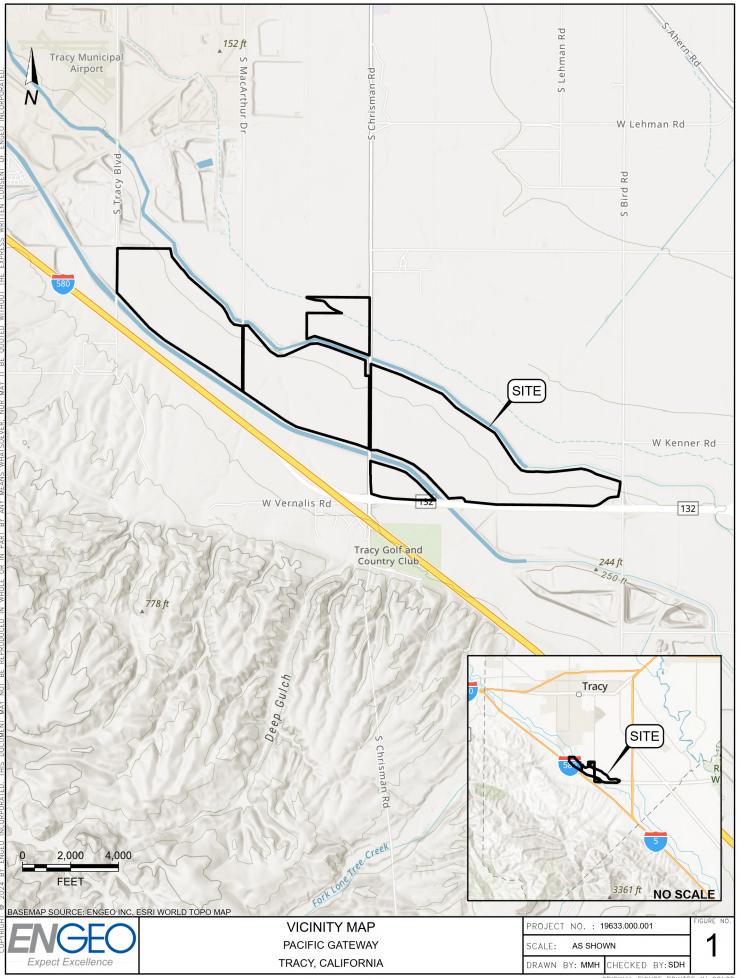
This document must not be subject to unauthorized reuse, that is, reusing without written authorization of ENGEO. Such authorization is essential because it requires ENGEO to evaluate the document's applicability given new circumstances, not the least of which is passage of time.

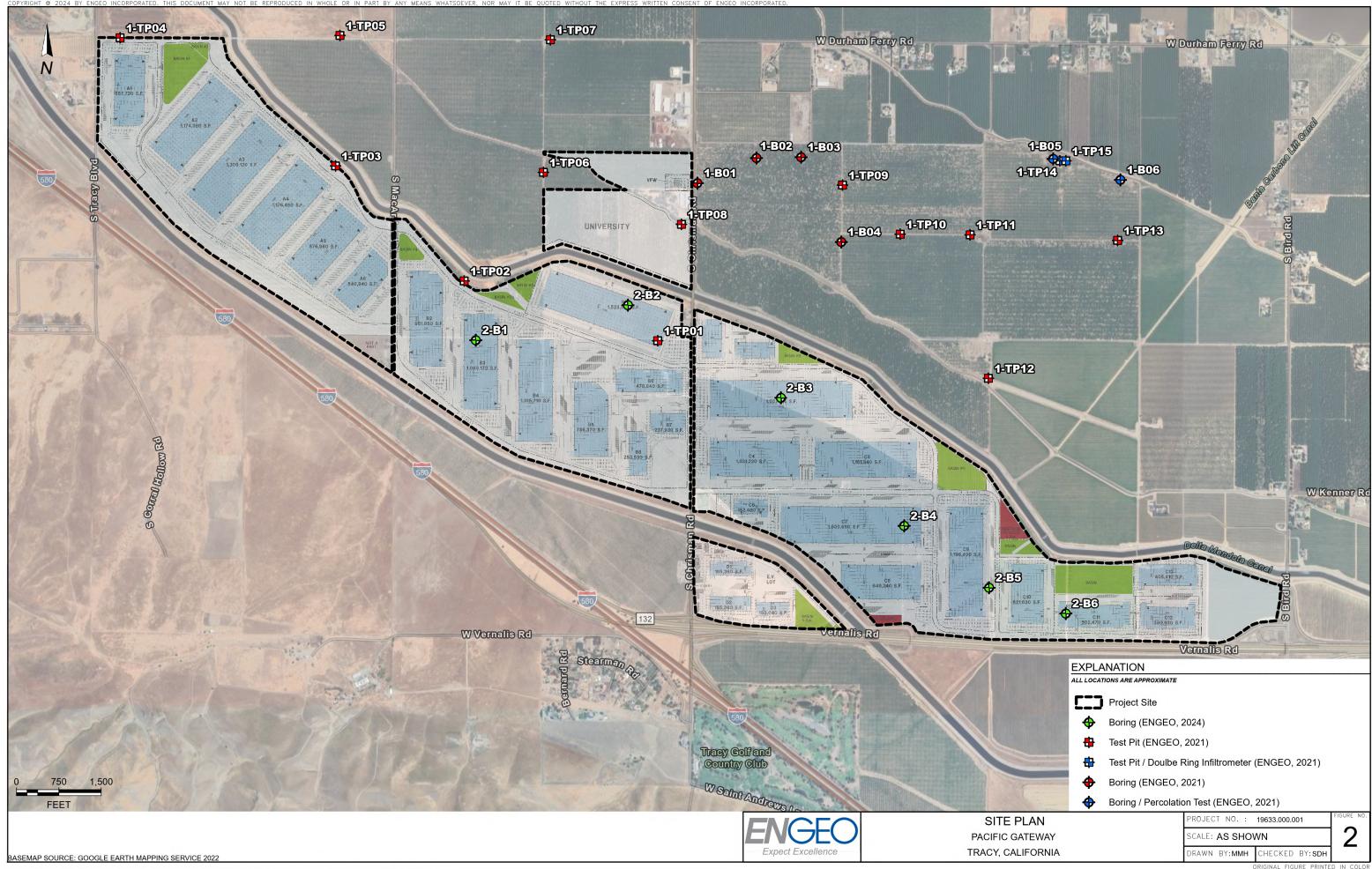
Actual field or other conditions will necessitate clarifications, adjustments, modifications or other changes to ENGEO's documents. Therefore, ENGEO must be engaged to prepare the necessary clarifications, adjustments, modifications or other changes before construction activities commence or further activity proceeds. If ENGEO's scope of services does not include on-site construction observation, or if other persons or entities are retained to provide such services, ENGEO cannot be held responsible for any or all claims arising from or resulting from the performance of such services by other persons or entities, and from any or all claims arising from or resulting from clarifications, adjustments, modifications, discrepancies or other changes necessary to reflect changed field or other conditions.

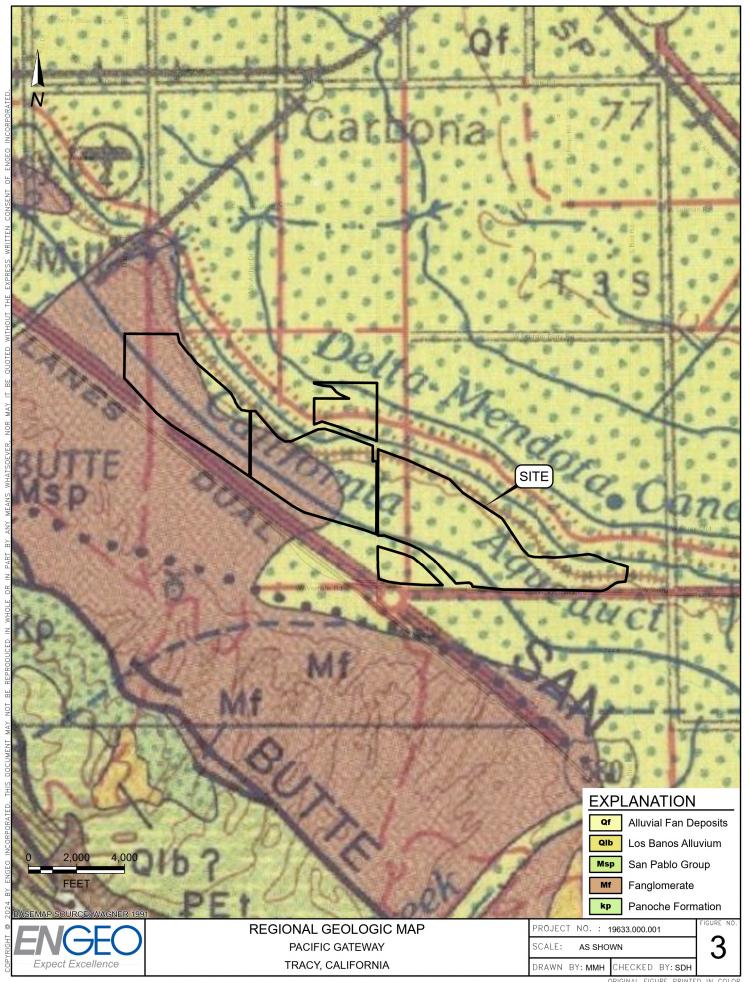

We determined the lines designating the interface between layers on the exploration logs using visual observations. The transition between the materials may be abrupt or gradual. The exploration logs contain information concerning samples recovered, indications of the presence of various materials such as clay, sand, silt, rock, existing fill, etc., and observations of groundwater encountered. The field logs also contain our interpretation of the subsurface conditions between sample locations. Therefore, the logs contain both factual and interpretative information. Our recommendations are based on the contents of the final logs, which represent our interpretation of the field logs.

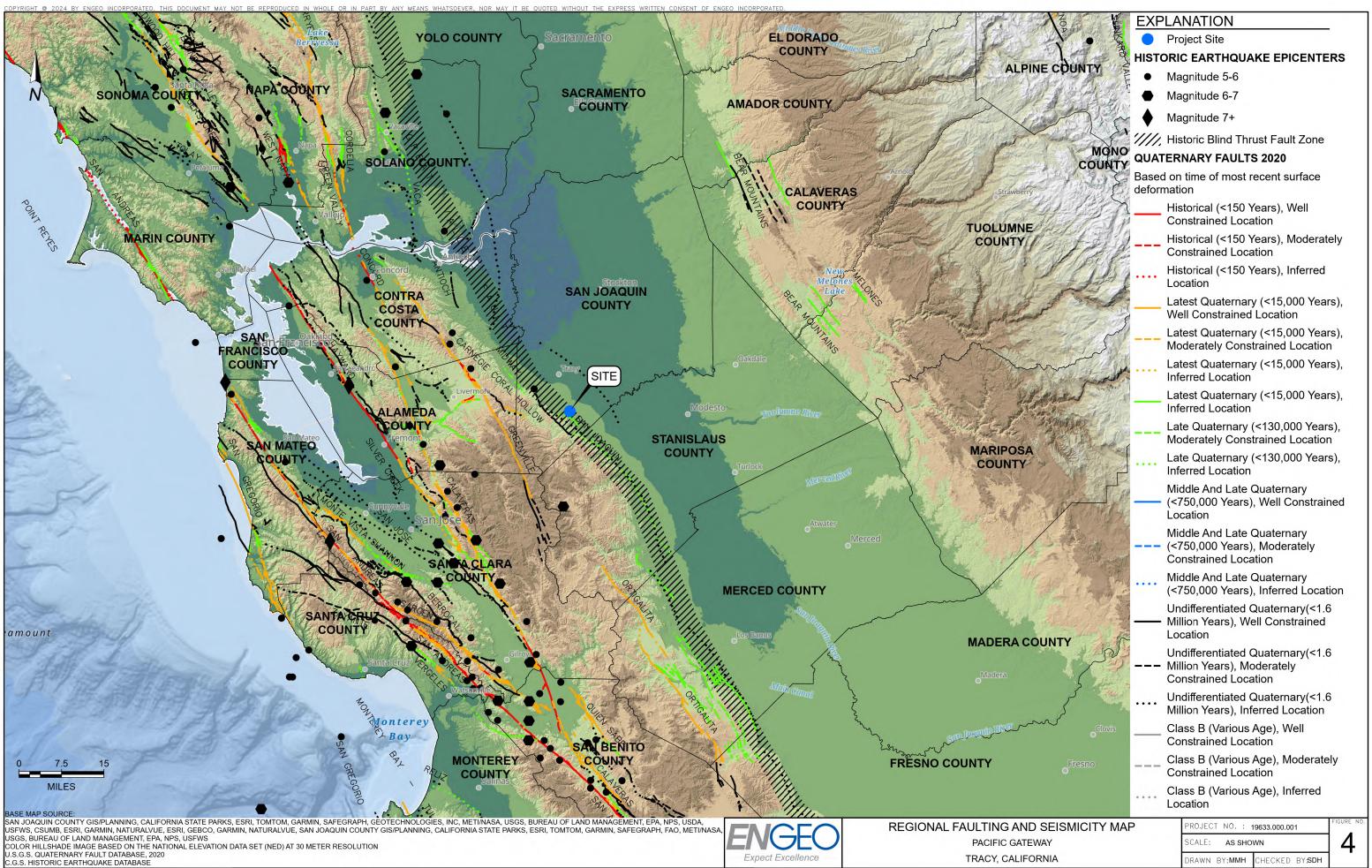
SELECTED REFERENCES

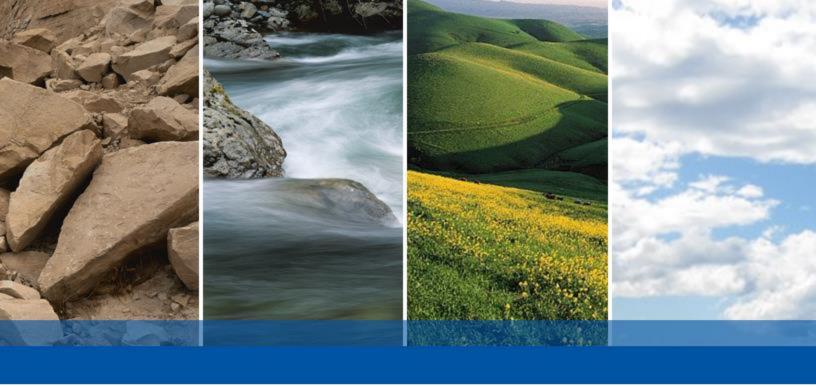
- American Society of Civil Engineers, 2011, *Minimum Design Loads for Buildings and other Structures ASCE 7-10.* Reston: American Society of Civil Engineers.
- Bryant, W. and Hart, E. (2007). Special Publication 42, *Fault-Rupture Hazard Zones in California*, Interim Revision 2007, California Department of Conservation.
- California Building Code, 2022.
- California Department of Transportation, 2008, Highway Design Manual.
- California Geologic Survey, 2008, Special Publication 117A, Guidelines for Evaluating and Mitigating Seismic Hazards in California.
- California Geological Survey, by Bryant, W.A., and Hart, E.W., *Fault-Rupture Hazard Zones in California*; Special Publication 42, Interim Revision 2007.
- Eaton, J., 1986, Tectonic Environment of the 1892 Vacaville/Winters Earthquakes and the Potential of Large Earthquakes along the Western Edge of Sacramento Valley: U.S. Geological Survey Open-File Report 86-370.
- ENGEO. 2021. Geotechnical Feasibility Report, Golden State Logistics Hub, Tracy, California. November 30, 2021; Revised January 11, 2023, Project No. 19633.000.001.
- Hart, E. W., 1997, Fault-Rupture Hazard Zones in California, California Division of Mines and Geology, Special Publication 42.
- Moores, E. M., Unruh, J. R., and Verosub, K. L., 1991, *Quaternary Blind Thrusting and Potential Seismic Hazards in the S.W. Sacramento Valley, California*; GSA Conference, May 29, 1991.
- Petersen, M. D., et al., 2008, *Documentation for the 2008 Update of the United States National Seismic Hazard Maps*; U.S. Geological Survey Open-File Report 2008–1128, 61 p.
- U.S. Geological Survey, 2008 National Seismic Hazard Maps Source Parameters, https://earthquake.usgs.gov/cfusion/hazfaults_2008_search/query_results.cfm.
- Wagner D. L., Bortugno E. J., and McJunkin R.D, Compilation, 1991, Geologic Map of the San Francisco-San Jose Quadrangle, California 1:250,000.
- Wong, I. G. and Biggar, N., 1989, Seismicity of Eastern Contra Costa County, San Francisco Bay Region, California: Seismological Society of America Bulletin, Vol. 79, No. 4.






FIGURES


FIGURE 1: Vicinity Map FIGURE 2: Site Plan


FIGURE 3: Regional Geologic Map
FIGURE 4: Regional Faulting and Seismicity Map

APPENDIX A

BORING LOG KEY EXPLORATION LOGS

KEY TO BORING LOGS

	MAJOR	RTYPES		DESCRIPTION			
THAN #200	GRAVELS MORE THAN HALF	CLEAN GRAVELS WITH LESS THAN 5% FINES GRAVELS WITH OVER 12 % FINES		GW - Well graded gravels or gravel-sand mixtures GP - Poorly graded gravels or gravel-sand mixtures			
NED SOILS MORE THAN "L LARGER THAN #200 SIEVE	COARSE FRACTION IS LARGER THAN NO. 4 SIEVE SIZE			GM - Silty gravels, gravel-sand and silt mixtures GC - Clayey gravels, gravel-sand and clay mixtures			
COARSE-GRAINED SO HALF OF MAT'L LARG SIEVE	SANDS MORE THAN HALF COARSE FRACTION IS SMALLER THAN	CLEAN SANDS WITH LESS THAN 5% FINES		SW - Well graded sands, or gravelly sand mixtures SP - Poorly graded sands or gravelly sand mixtures			
COARSE- HALF OI	NO. 4 SIEVE SIZE	SANDS WITH OVER 12 % FINES		SM - Silty sand, sand-silt mixtures SC - Clayey sand, sand-clay mixtures			
NED SOILS MORE OF MAT'L SMALLER I #200 SIEVE	SILTS AND CLAYS LIQ	UID LIMIT 50 % OR LESS		ML - Inorganic silt with low to medium plasticity CL - Inorganic clay with low to medium plasticity OL - Low plasticity organic silts and clays			
FINE-GRAINED S THAN HALF OF MA THAN #200	SILTS AND CLAYS LIQUID	LIMIT GREATER THAN 50 %		MH - Elastic silt with high plasticity CH - Fat clay with high plasticity OH - Highly plastic organic silts and clays			
	HIGHLY ORG	GANIC SOILS	<u>\(\frac{\fin}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fir}}}}}}}}{\frac{\frac{\frac{\frac{\f{\frac{\frac{\frac{\frac{\frac{\frac{\frac</u>	PT - Peat and other highly organic soils			
For fin	e-grained soils with 15 to 29% retaine	d on the #200 sieve, the words "with s	sand" or	"with gravel" (whichever is predominant) are added to the group name			

For fine-grained soils with 15 to 29% retained on the #200 sieve, the words "with sand" or "with gravel" (whichever is predominant) are added to the group name.

For fine-grained soil with >30% retained on the #200 sieve, the words "sandy" or "gravelly" (whichever is predominant) are added to the group name.

			GF	RAIN SIZES						
U.S. STANDARD SERIES SIEVE SIZE				CLEAR SQUARE SIEVE OPENINGS						
2	00	40	10	4 3/	'4 '' 3	3" 12	2"			
SILTS		SAND		GRA	VEL					
AND	FINE	MEDIUM	COARSE	FINE	COARSE	COBBLES	BOULDERS			

RELATIVE DENSITY

SANDS AND GRAVELS	BLOWS/FOOT	SILTS AND CLAYS	STRENGTH*
	(S.P.T.)	VERY SOFT	0-1/4
VERY LOOSE	0-4	SOFT	1/4-1/2
LOOSE	4-10	MEDIUM STIFF	1/2-1
MEDIUM DENSE	10-30	STIFF	1-2
DENSE VERY DENSE	30-50	VERY STIFF	2-4
VERT DENSE	OVER 50	HARD	OVER 4

		MOIST	URE CONDITION
	SAMPLER SYMBOLS	DRY	Dusty, dry to touch
	Modified California (3" O.D.) sampler	MOIST WET	Damp but no visible water Visible freewater
	California (2.5" O.D.) sampler	LINE TYPE	
	S.P.T Split spoon sampler	LINE TYPES	
	Shelby Tube		Solid - Layer Break
	Dames and Moore Piston		Dashed - Gradational or approximate layer break
П	Continuous Core	GROUNDWATE	ER SYMBOLS
X	Bag Samples	∑ ■	Groundwater level during drilling
m	Grab Samples	T	Stabilized groundwater level
NR	No Recovery		

(S.P.T.) Number of blows of 140 lb. hammer falling 30" to drive a 2-inch O.D. (1-3/8 inch I.D.) sampler

^{*} Unconfined compressive strength in tons/sq. ft., asterisk on log means determined by pocket penetrometer

CONSISTENCY

LATITUDE: 37.652472

LONGITUDE: -121.410996

Geotechnical Exploration Pacific Gateway Tracy, CA

DATE DRILLED: 8/16/2024

HOLE DEPTH: Approx. 16½ ft.

HOLE DIAMETER: 4½ in.

SURF ELEV (WGS84): Approx. 215 ft.

		19633.000.002 SURF ELEV (WGS84): A			oprox. 21	5 ft.		HAMMER TYPE: 140 lb. Rope and Cathead									
Ī									Atterberg Limits							sf)	
	Depth in Feet	Elevation in Feet	Sample Type	DESC	CRIPTION	Log Symbol	Water Level	Blow Count/Foot	Liquid Limit	Plastic Limit	Plasticity Index	Fines Content (% passing #200 sieve)	Moisture Content (% dry weight)	Dry Unit Weight (pcf)	Shear Strength (psf) *field approximation	Unconfined Strength (ts	Strength Test Type
					CH), dark brown, very stiff to fine- to coarse-grained sand,			35	53	23	30	84				>4.5*	PP
	- - - -			medium plasticity, <15% fill fines	h brown, stiff to hard, moist, ne-grained sand, contains silt			9									
	5 <u>-</u>	210		SANDY LEAN CLAY (CL), low plasticity, 30-40% fine-	yellowish brown, stiff, moist, to medium-grained sand												
	-			plasticity, <15% fine-graine	own, soft, wet, medium to high ed sand yellowish brown, hard, moist,			18									
NC.GDT 9/12/24	10			medium plasticity, 30-40% Grades to contain 5-10% f	fine- to coarse-grained sand			50/6"								>4.5*	PP
LOG - GEOTECHNICAL_SU+QU W/ ELEV 19633000002_PH004_2-B01 THROUGH 2-B06.GPJ ENGEO INC.GDT 9/12/24	15	200		Grades to contain <5% fine	e gravel			50								>4.5* >4.5*	PP PP
19633000002_PH004_2-B01				Bottom of boring at approx surface. No groundwater e	mately 16½ feet below ground ncountered at time of drilling.												
ECHNICAL_SU+QU W/ ELEV																	
LOG - GEOTI																	

LATITUDE: 37.654251

LONGITUDE: -121.401709

Geotechnical Exploration Pacific Gateway Tracy, CA

DATE DRILLED: 8/16/2024
HOLE DEPTH: Approx. 25 ft.
HOLE DIAMETER: 4½ in.
SURF ELEV (WGS84): Approx. 190 ft.

Į		19	963	3.000.002	SURF ELEV (WGS84): Ap	prox. 190) ft.			HA	AMME	RIYP	'E: 14() lb. Ro	oe and	Cathe	ad
1									Atter	berg L	imits					ef)	
	Depth in Feet	Elevation in Feet	Sample Type		RIPTION	Log Symbol	Water Level	Blow Count/Foot	Liquid Limit	Plastic Limit	Plasticity Index	Fines Content (% passing #200 sieve)	Moisture Content (% dry weight)	Dry Unit Weight (pcf)	Shear Strength (psf) *field approximation	Unconfined Strength (tsf) *field approximation	Strength Test Type
		_		LEAN CLAY WITH SAND (medium plasticity, 15-25% rootlets present	CL), dark brown, hard, moist, fine- to coarse-grained sand,			31								>4.5* >4.5*	PP PP
	5	_ _ _ 185		Grades to brown, contains	carbonates, no rootlets present			10								. 4.5*	55
2/24		_		Grades to light brown mottl	ed with dark brown			29								>4.5* >4.5*	PP PP
.OG - GEOTECHNICAL_SU+QU W/ ELEV 19633000002_PH004_2-B01 THROUGH 2-B06.GPJ ENGEO INC.GDT 9/12/24	10	- - 180		medium plasticity, <15% fir clay fines	ish brown, hard, moist, low to ne- to medium-grained, contains			50/6"								>4.5*	PP
301 THROUGH 2-B06.GF		_		moist, high plasticity, 15-25 sand, carbonates present	CL), yellowish brown, hard, % fine- to medium-grained												
9633000002_PH004_2-E	15	_ _ 175 _		Grades to brown, very stiff LEAN CLAY WITH SAND	CL), yellowish brown, very stiff			65								3.0* >4.5*	PP PP
SU+QU W/ ELEV 1	-	_		to hard, moist, medium plassand Grades to hard, maganese SANDY LEAN CLAY (CL), medium plasticity, 30-40%	oxide present yellowish brown, hard, moist,												
LOG - GEOTECHNICAL	20	– – 170			mio granica cana											4.5*	PP

LATITUDE: 37.654251

LONGITUDE: -121.401709

Geotechnical Exploration Pacific Gateway Tracy, CA

DATE DRILLED: 8/16/2024
HOLE DEPTH: Approx. 25 ft.
HOLE DIAMETER: 4½ in.
SURE FLEV (WGS84): Approx. 190 ft.

DESCRIPTION DESCR			19	963	33.000.002	SURF ELEV (WGS84): App	prox. 190) ft.			H	AMME	R TYP	E: 140	lb. Ro	pe and	Cathe	ad
SILTY SAND (SM), yellowish brown, medium dense, moist, 15-20% fines, fine- to medium-grained sand LEAN CLAY WITH SAND (CL), yellowish brown, very stiff, moist, medium plasticity, 15-25% fine- to medium-grained sand Bottom of boring at approximately 25 feet below ground surface. No groundwater encountered at time of drilling.	Ī									Atter	berg L	imits					(
SILTY SAND (SM), yellowish brown, medium dense, moist, 15-20% fines, fine- to medium-grained sand LEAN CLAY WITH SAND (CL), yellowish brown, very stiff, moist, medium plasticity, 15-25% fine- to medium-grained sand 47 Bottom of boring at approximately 25 feet below ground surface. No groundwater encountered at time of drilling.		Depth in Feet	Elevation in Feet	Sample Type	DESC	CRIPTION		Water Level	Blow Count/Foot	Liquid Limit	Plastic Limit	Plasticity Index	Fines Content (% passing #200 sieve)	Moisture Content (% dry weight)	Dry Unit Weight (pcf)	Shear Strength (psf) *field approximation	Unconfined Strength (tsf *field approximation	Strength Test Type
	LOG - GEOTECHNICAL_SU+QU W/ ELEV 19633000002_PH004_2-B01 THROUGH 2-B06.GPJ ENGEO INC.GDT 9/12/24			S S S S S S S S S S S S S S S S S S S	SILTY SAND (SM), yellow moist, 15-20% fines, fine-	(CL), yellowish brown, very stiff, 5-25% fine- to medium-grained imately 25 feet below ground		PW .	38	Light Fig. 1	Pla	Pid	Ein (%)	(M) (MC)	Dr. (bc)	Sh *fie	Un *fie	Str

LATITUDE: 37.649813

LONGITUDE: -121.392297

Geotechnical Exploration Pacific Gateway Tracy, CA 19633 000 002

DATE DRILLED: 8/16/2024
HOLE DEPTH: Approx. 16½ ft.
HOLE DIAMETER: 4½ in.
SURF ELEV (WGS84): Approx. 204 ft.

DESCRIPTION DESCR			19	963	3.000.002	SURF ELEV (WGS84): Ap	prox. 204	4 ft.			H	AMME	R TYP	E: 140) lb. Ro	pe and	Cathe	ad
LEAN CLAY (CL), dark brown, stiff to hard, moist, medium to high plasticity, <15% fine- to medium-grained sand LEAN CLAY WITH SAND (CL), yellowish brown, very stiff to hard, moist, medium plasticity, 15-25% fine- to medium-grained sand, 5-10% fine gravel SANDY SILT (ML), light yellowish brown, very stiff, moist, medium plasticity, slow dilatancy, 30-40% fine-grained sand LEAN CLAY WITH SAND (CL), yellowish brown, very stiff, moist, medium plasticity, 15-25% fine- to coarse-grained and LEAN CLAY WITH SAND (CL), yellowish brown, very stiff, moist, medium plasticity, 15-25% fine- to coarse-grained and LEAN CLAY WITH SAND (CL), olive brown, very stiff, moist, medium plasticity, 15-25% fine- to coarse-grained and LEAN CLAY WITH SAND (CL), olive brown, very stiff, moist, medium plasticity, 15-25% fine- grained sand, contains sitt fines										Atter	berg L	imits						
LEAN CLAY (CL), dark brown, stiff to hard, moist, medium to high plasticity, <15% fine- to medium-grained sand LEAN CLAY WITH SAND (CL), yellowish brown, very stiff to hard, moist, medium plasticity, 15-25% fine- to medium-grained sand, 5-10% fine gravel SANDY SILT (ML), light yellowish brown, very stiff, moist, medium plasticity, slow dilatancy, 30-40% fine-grained sand LEAN CLAY WITH SAND (CL), yellowish brown, very stiff, moist, medium plasticity, 15-25% fine- to coarse-grained sand Grades to Brown LEAN CLAY WITH SAND (CL), olive brown, very stiff, moist, medium plasticity, 15-25% fine- frained sand, contains midtines and late of the plant		Depth in Feet	Elevation in Feet	Sample Type	DESC	RIPTION	Log Symbol	Water Level	Blow Count/Foot	Liquid Limit	Plastic Limit	Plasticity Index	Fines Content (% passing #200 sieve)	Moisture Content (% dry weight)	Dry Unit Weight (pcf)	Shear Strength (psf) *field approximation	Unconfined Strength (tsf *field approximation	Strength Test Type
COTECHNICAL	LOG - GEOTECHNICAL_SU+QU W/ ELEV 19633000002_PH004_2-B01 THROUGH 2-B06.GPJ ENGEO INC.GDT 9/12/24	5		Sample	LEAN CLAY WITH SAND to hard, moist, medium plasticity, slow dilasand LEAN CLAY WITH SAND moist, medium plasticity, slow dilasand LEAN CLAY WITH SAND moist, medium plasticity, 1sand Crades to Brown LEAN CLAY WITH SAND moist, medium plasticity, 1sand LEAN CLAY WITH SAND moist, medium plasticity, 1sand	CL), yellowish brown, very stiff sticity, 15-25% fine- to 10% fine gravel CL), yellowish brown, very stiff, moist, tancy, 30-40% fine-grained CL), yellowish brown, very stiff, 5-25% fine- to coarse-grained CL), olive brown, very stiff, 5-25% fine- grained sand,	Log Syr	Water L	21 21 40				Fines Cc (% passi	Moistur (% dry v	Dry Uni (pcf)	Shear S *field ap	>4.5*	Hength Strength

LATITUDE: 37.643639

LONGITUDE: -121.384667

Geotechnical Exploration Pacific Gateway Tracy, CA

DATE DRILLED: 8/16/2024
HOLE DEPTH: Approx. 23 ft.
HOLE DIAMETER: 4½ in.
SURE FLEV (WGS84): Approx. 215 ft.

		19	63	3.000.002	SURF ELEV (WGS84): Ap	prox. 21	ft.			H	AMME	R TYP	E: 140	b. Ro	pe and	Cathe	ad
									Atter	berg L	imits	<u> </u>				(st)	
	Depth in Feet	Elevation in Feet	Sample Type	DESC	RIPTION	Log Symbol	Water Level	Blow Count/Foot	Liquid Limit	Plastic Limit	Plasticity Index	Fines Content (% passing #200 sieve)	Moisture Content (% dry weight)	Dry Unit Weight (pcf)	Shear Strength (psf) *field approximation	Unconfined Strength (tsf) *field approximation	Strength Test Type
	-	_			dark brown, stiff to hard, moist, fine- to medium-grained sand, s present			20								>4.5*	PP
	-	_		Grades to yellowish brown				8									
	5	— 210 —		LEAN CLAY WITH SAND medium plasticity, 15-25% SANDY LEAN CLAY WITH	(CL), brown, soft, moist to wet, fine- to medium-grained sand			14								>4.5*	PP
	- - - - - - -	_			n plasticity, approximately 15%												
LOG - GEOTECHNICAL_SU+QU W/ ELEV 19833000002_PH004_2-B01 THROUGH 2-B06.GPJ ENGEO INC.GDT 9/12/24	10	— 205 —		SILTY SAND (SM), yellowi moist, 15-25% fines, <5% coarse-grained sand				22									
UGH 2-B06.GPJ EN	15			SANDY LEAN CLAY (CL), medium plasticity, 30-40% <5% gravel, contains silt fir	yellowish brown, moist, low to fine- to coarse-grained sand, les											>4.5*	PP
1004_2-B01 THRO		_		moist, medium plasticity, fi				16				61					
19633000002_PF	20	— — 195			(CL), yellowish brown, hard, 5-25% fine- to medium-grained												
ı W/ ELEV	- - - - -	_		SANDY LEAN CLAY (CL),				38									
AL_SU+QU		_		moist, low to medium plast coarse-grained sand				18									
OG - GEOTECHNIC					mately 23 feet below ground ncountered at time of drilling.												
۲L																	

LATITUDE: 37.640666

LONGITUDE: -121.379444

Geotechnical Exploration Pacific Gateway Tracy, CA

DATE DRILLED: 8/16/2024
HOLE DEPTH: Approx. 20 ft.
HOLE DIAMETER: 4½ in.
SURE FLEV (WGS84): Approx. 203 ft.

		19		3.000.002	SURF ELEV (WGS84): App	prox. 203	3 ft.			HA	AMME	R TYP	E: 140	b. Ro	pe and	Cathe	ad
	Depth in Feet	Elevation in Feet	Sample Type	DESC	RIPTION	Log Symbol	Water Level	Blow Count/Foot	Atter	Plastic Limit Ban	Plasticity Index ශි	Fines Content (% passing #200 sieve)	Moisture Content (% dry weight)	Dry Unit Weight (pcf)	Shear Strength (psf) *field approximation	Unconfined Strength (tsf) *field approximation	Strength Test Type
-	-	— — — 200		plasticity, <15% fine-graine gravel SANDY LEAN CLAY (CL),	wn, stiff to hard, moist, medium d sand, <5% fine to coarse yellowish brown, medium stiff, 0-40% fine- to coarse-grained		۸	22 6	7	ш	ш		N ()		0) *	>4.5* 4.5*	PP PP
	5	_ _ _ _ 195		Grades to soft Grades to hard				15						110		1.58	UC
GEO INC.GDT 9/12/24	10	_ _ _			WITH SILT (SP-SM), yellowish st, contains fine gravel, fine- to			26				9					
LOG - GEOTECHNICAL_SU+QU W/ ELEV 19633000002_PH004_2-801 THROUGH 2-B06.GPJ ENGEO INC.GDT 9/12/24	15	190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190190<l< td=""><td></td><td>SILTY SAND WITH GRAV medium dense, moist, fine- medium dense, moist, fine- lean CLAY WITH SAND of medium plasticity, 15-25%</td><td>to coarse-grained sand</td><td></td><td></td><td>12</td><td></td><td></td><td></td><td>21</td><td></td><td></td><td></td><td></td><td></td></l<>		SILTY SAND WITH GRAV medium dense, moist, fine- medium dense, moist, fine- lean CLAY WITH SAND of medium plasticity, 15-25%	to coarse-grained sand			12				21					
SU+QU W/ ELEV 19633000002_PI	20	_		medium plasticity, 30-40% Bottom of boring at approxi	yellowish brown, stiff, moist, fine- to medium-grained sand mately 20 feet below ground accountered at time of drilling.			24									
LOG - GEOTECHNICAL_																	

Geotechnical Exploration

Pacific Gateway

Tracy, CA

LOG OF BORING 2-B6

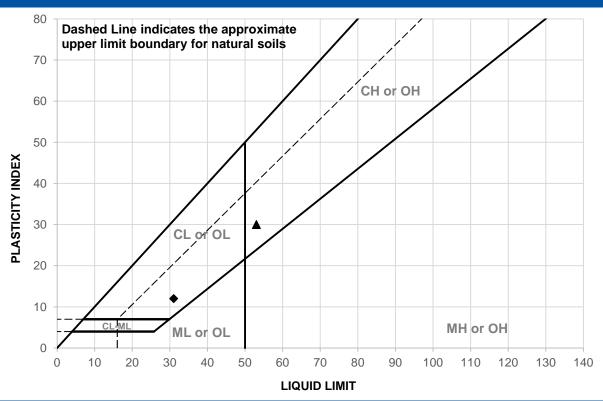
LATITUDE: 37.639445

DATE DRILLED: 8/16/2024 HOLE DEPTH: Approx. 15 ft. HOLE DIAMETER: 41/2 in.

LOGGED / REVIEWED BY: V. Navarro / ZAC DRILLING CONTRACTOR: West Coast Exploration DRILLING METHOD: Solid Flight Auger

LONGITUDE: -121.37474

	CRIPTION	Log Symbol	Water Level	Blow Count/Foot		Plastic Limit ad		Fines Content (% passing #200 sieve)	Moisture Content (% dry weight)	Dry Unit Weight (pcf)	Shear Strength (psf) *field approximation	Unconfined Strength (tsf) *field approximation	Strength Test Type
LEAN CLAY WITH SAND medium plasticity, 15-25% <5% fine gravel, rootlets pr SILT WITH SAND (ML), ye medium plasticity, slow dila	fine- to medium-grained sand, esent flowish brown, hard, moist, tancy, 15-25% fine- to			24								>4.5* >4.5*	PP PP
plasticity, 30-40% fine- to r Grades to moist, stiff to har SILTY SAND WITH GRAV medium dense, moist, 15-2	nedium-grained sand d EL (SM), yellowish brown, 25% fines, fine- to			40								2* >4.5*	PP PP
SILTY SAND WITH GRAV medium dense, moist, 30-4 medium-grained sand, fine Bottom of boring at approxi	EL (SM), yellowish brown, .0% fines, fine- to to coarse gravel mately 15 feet below ground			50/6"				23					
	LEAN CLAY WITH SAND (medium plasticity, 15-25% <5% fine gravel, rootlets properties of the second plasticity of the second plasticity, slow dilar medium-grained sand, <5% SANDY LEAN CLAY (CL), plasticity, 30-40% fine- to note to medium-grained sand, stiff to hare the second plasticity of the sec	LEAN CLAY WITH SAND (CL), brown, hard, moist, medium plasticity, 15-25% fine- to medium-grained sand, <5% fine gravel, rootlets present SILT WITH SAND (ML), yellowish brown, hard, moist, medium plasticity, slow dilatancy, 15-25% fine- to medium-grained sand, <5% fine gravel SANDY LEAN CLAY (CL), dark brown, soft, wet, low plasticity, 30-40% fine- to medium-grained sand Grades to moist, stiff to hard SILTY SAND WITH GRAVEL (SM), yellowish brown, medium dense, moist, 15-25% fines, fine- to medium-grained sand, fine to coarse gravel	LEAN CLAY WITH SAND (CL), brown, hard, moist, medium plasticity, 15-25% fine- to medium-grained sand, <5% fine gravel, rootlets present SILT WITH SAND (ML), yellowish brown, hard, moist, medium plasticity, slow dilatancy, 15-25% fine- to medium-grained sand, <5% fine gravel SANDY LEAN CLAY (CL), dark brown, soft, wet, low plasticity, 30-40% fine- to medium-grained sand Grades to moist, stiff to hard SILTY SAND WITH GRAVEL (SM), yellowish brown, medium dense, moist, 15-25% fines, fine- to medium-grained sand, fine to coarse gravel CRAN CLAY WITH GRAVEL (CL), yellowish brown, moist, low plasticity, 15-25% fine gravel SILTY SAND WITH GRAVEL (SM), yellowish brown, moist, low plasticity, 15-25% fine gravel SILTY SAND WITH GRAVEL (SM), yellowish brown, medium dense, moist, 30-40% fines, fine- to medium-grained sand, fine to coarse gravel Bottom of boring at approximately 15 feet below ground	LEAN CLAY WITH SAND (CL), brown, hard, moist, medium plasticity, 15-25% fine- to medium-grained sand, <5% fine gravel, rootlets present SILT WITH SAND (ML), yellowish brown, hard, moist, medium plasticity, slow dilatancy, 15-25% fine- to medium-grained sand, <5% fine gravel SANDY LEAN CLAY (CL), dark brown, soft, wet, low plasticity, 30-40% fine- to medium-grained sand Grades to moist, stiff to hard SILTY SAND WITH GRAVEL (SM), yellowish brown, medium dense, moist, 15-25% fines, fine- to medium-grained sand, fine to coarse gravel Crades to very dense LEAN CLAY WITH GRAVEL (CL), yellowish brown, moist, low plasticity, 15-25% fine gravel SILTY SAND WITH GRAVEL (SM), yellowish brown, medium dense, moist, 30-40% fines, fine- to medium-grained sand, fine to coarse gravel Bottom of boring at approximately 15 feet below ground	LEAN CLAY WITH SAND (CL), brown, hard, moist, medium plasticity, 15-25% fine- to medium-grained sand, <5% fine gravel, rootlets present SILT WITH SAND (ML), yellowish brown, hard, moist, medium plasticity, slow dilatancy, 15-25% fine- to medium-grained sand, <5% fine gravel SANDY LEAN CLAY (CL), dark brown, soft, wet, low plasticity, 30-40% fine- to medium-grained sand Grades to moist, stiff to hard SILTY SAND WITH GRAVEL (SM), yellowish brown, medium dense, moist, 15-25% fines, fine- to medium-grained sand, fine to coarse gravel Grades to very dense LEAN CLAY WITH GRAVEL (CL), yellowish brown, moist, low plasticity, 15-25% fine gravel SILTY SAND WITH GRAVEL (SM), yellowish brown, moist, low plasticity, 15-25% fine gravel SILTY SAND WITH GRAVEL (SM), yellowish brown, medium dense, moist, 30-40% fines, fine- to medium-grained sand, fine to coarse gravel Bottom of boring at approximately 15 feet below ground	LEAN CLAY WITH SAND (CL), brown, hard, moist, medium plasticity, 15-25% fine- to medium-grained sand, <5% fine gravel, rootlets present SILT WITH SAND (ML), yellowish brown, hard, moist, medium plasticity, slow dilatancy, 15-25% fine- to medium-grained sand, <5% fine gravel 13 SANDY LEAN CLAY (CL), dark brown, soft, wet, low plasticity, 30-40% fine- to medium-grained sand Grades to moist, stiff to hard SILTY SAND WITH GRAVEL (SM), yellowish brown, medium dense, moist, 15-25% fines, fine- to medium-grained sand, fine to coarse gravel Grades to very dense LEAN CLAY WITH GRAVEL (CL), yellowish brown, moist, low plasticity, 15-25% fine gravel SILTY SAND WITH GRAVEL (SM), yellowish brown, moist, medium dense, moist, 30-40% fines, fine- to medium-grained sand, fine to coarse gravel Bottom of boring at approximately 15 feet below ground	LEAN CLAY WITH SAND (CL), brown, hard, moist, medium plasticity, 15-25% fine- to medium-grained sand, <5% fine gravel, rootlets present SILT WITH SAND (ML), yellowish brown, hard, moist, medium plasticity, slow dilatancy, 15-25% fine- to medium-grained sand, <5% fine gravel 13 SANDY LEAN CLAY (CL), dark brown, soft, wet, low plasticity, 30-40% fine- to medium-grained sand Grades to moist, stiff to hard SILTY SAND WITH GRAVEL (SM), yellowish brown, medium dense, moist, 15-25% fines, fine- to medium-grained sand, fine to coarse gravel Grades to very dense LEAN CLAY WITH GRAVEL (CL), yellowish brown, moist, low plasticity, 15-25% fine gravel SILTY SAND WITH GRAVEL (SM), yellowish brown, moist, low plasticity, 15-25% fine gravel SILTY SAND WITH GRAVEL (SM), yellowish brown, medium dense, moist, 30-40% fines, fine- to medium-grained sand, fine to coarse gravel Bottom of boring at approximately 15 feet below ground	LEAN CLAY WITH SAND (CL), brown, hard, moist, medium plasticity, 15-25% fine- to medium-grained sand, <5% fine gravel, rootlets present SILT WITH SAND (ML), yellowish brown, hard, moist, medium-plasticity, slow dilatancy, 15-25% fine- to medium-grained sand, <5% fine gravel 13 SANDY LEAN CLAY (CL), dark brown, soft, wet, low plasticity, 30-40% fine- to medium-grained sand Grades to moist, stiff to hard SILTY SAND WITH GRAVEL (SM), yellowish brown, medium dense, moist, 15-25% fines, fine- to medium-grained sand, fine to coarse gravel Grades to very dense LEAN CLAY WITH GRAVEL (CL), yellowish brown, moist, low plasticity, 15-25% fine gravel SILTY SAND WITH GRAVEL (SM), yellowish brown, moist, low plasticity, 15-25% fine gravel SILTY SAND WITH GRAVEL (SM), yellowish brown, medium dense, moist, 30-40% fine- to medium-grained sand, fine to coarse gravel Bottom of boring at approximately 15 feet below ground	LEAN CLAY WITH SAND (CL), brown, hard, moist, medium plasticity, 15-25% fine- to medium-grained sand, <5% fine gravel, rootlets present SILT WITH SAND (ML), yellowish brown, hard, moist, medium plasticity, slow dilatancy, 15-25% fine- to medium-grained sand, <5% fine gravel 13 SANDY LEAN CLAY (CL), dark brown, soft, wet, low plasticity, 30-40% fine- to medium-grained sand Grades to moist, stiff to hard SILTY SAND WITH GRAVEL (SM), yellowish brown, medium dense, moist, 15-25% fines, fine- to medium-grained sand, fine to coarse gravel Grades to very dense 50/6" 23 LEAN CLAY WITH GRAVEL (CL), yellowish brown, moist, low plasticity, 15-25% fine gravel SILTY SAND WITH GRAVEL (SM), yellowish brown, moist, low plasticity, 15-25% fine gravel SILTY SAND WITH GRAVEL (SM), yellowish brown, medium-grained sand, fine to coarse gravel	LEAN CLAY WITH SAND (CL), brown, hard, moist, medium plasticity, 15-25% fine- to medium-grained sand, <5% fine gravel, rootlets present SILT WITH SAND (ML), yellowish brown, hard, moist, medium plasticity, slow dilatancy, 15-25% fine- to medium-grained sand, <5% fine gravel SANDY LEAN CLAY (CL), dark brown, soft, wet, low plasticity, 30-40% fine- to medium-grained sand Grades to moist, stiff to hard SILTY SAND WITH GRAVEL (SM), yellowish brown, medium dense, moist, 15-25% fines, fine- to medium-grained sand, fine to coarse gravel Grades to very dense 50/6" 23 LEAN CLAY WITH GRAVEL (CL), yellowish brown, moist, low plasticity, 15-25% fine gravel SILTY SAND WITH GRAVEL (SM), yellowish brown, medium dense, moist, 30-40% fines, fine- to medium-grained sand, fine to coarse gravel Bottom of boring at approximately 15 feet below ground	LEAN CLAY WITH SAND (CL), brown, hard, moist, medium plasticity, 15-25% fine- to medium-grained sand, <5% fine gravel, rootlets present SILT WITH SAND (ML), yellowish brown, hard, moist, medium plasticity, slow dilatancy, 15-25% fine- to medium-grained sand, <5% fine gravel SANDY LEAN CLAY (CL), dark brown, soft, wet, low plasticity, 30-40% fine- to medium-grained sand Grades to moist, stiff to hard SILTY SAND WITH GRAVEL (SM), yellowish brown, medium dense, moist, 15-25% fines, fine- to medium-grained sand, fine to coarse gravel Grades to very dense LEAN CLAY WITH GRAVEL (CL), yellowish brown, moist, low plasticity, 15-25% fine gravel SILTY SAND WITH GRAVEL (SM), yellowish brown, moist, low plasticity, 15-25% fine gravel SILTY SAND WITH GRAVEL (SM), yellowish brown, medium dense, moist, 30-40% fines, fine- to medium-grained sand, fine to coarse gravel Bottom of boring at approximately 15 feet below ground	LEAN CLAY WITH SAND (CL), brown, hard, moist, medium plasticity, 15-25% fine- to medium-grained sand, <5% fine gravel, rootlets present SILT WITH SAND (ML), yellowish brown, hard, moist, medium plasticity, slow dilatancy, 15-25% fine- to medium-grained sand, <5% fine gravel 13 SANDY LEAN CLAY (CL), dark brown, soft, wet, low plasticity, 30-40% fine- to medium-grained sand Grades to moist, stiff to hard SILTY SAND WITH GRAVEL (SM), yellowish brown, medium dense, moist, 15-25% fines, fine- to medium-grained sand, fine to coarse gravel Grades to very dense LEAN CLAY WITH GRAVEL (CL), yellowish brown, moist, low plasticity, 15-25% fine gravel SILTY SAND WITH GRAVEL (SM), yellowish brown, moist, low plasticity, 15-25% fine gravel SILTY SAND WITH GRAVEL (SM), yellowish brown, medium dense, moist, 30-40% fines, fine- to medium-grained sand, fine to coarse gravel Bottom of boring at approximately 15 feet below ground	LEAN CLAY WITH SAND (CL), brown, hard, moist, medium plasticity, 15-25% fine- to medium-grained sand, 5% fine gravel, roollets present SILT WITH SAND (ML), yellowish brown, hard, moist, medium plasticity, slow dilatancy, 15-25% fine- to medium-grained sand, 45% fine gravel SANDY LEAN CLAY (CL), dark brown, soft, wet, low plasticity, 30-40% fine- to medium-grained sand Grades to moist, stiff to hard SILTY SAND WITH GRAVEL (SM), yellowish brown, medium dense, moist, 15-25% fine- to medium-grained sand, fine to coarse gravel LEAN CLAY WITH GRAVEL (CL), yellowish brown, moist, low plasticity, 15-25% fine gravel SILTY SAND WITH GRAVEL (CL), yellowish brown, moist, low plasticity, 15-25% fine gravel SILTY SAND WITH GRAVEL (SM), yellowish brown, medium dense, moist, 30-40% fine- to medium-grained sand, fine to coarse gravel Bottom of boring at approximately 15 feet below ground



APPENDIX B

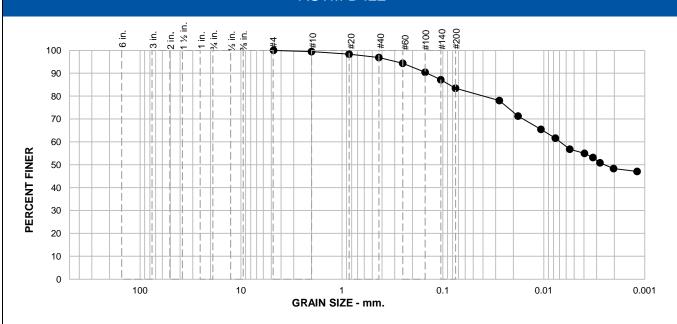
LABORATORY TEST DATA

Liquid and Plastic Limits Test Report Unconfined Compression Test Particle Size Distribution Report

LIQUID AND PLASTIC LIMITS TEST REPORT ASTM D4318

	SAMPLE ID	DEPTH (ft)	MATERIAL DESCRIPTION	LL	PL	PI
A	2-B1@1.5	1.5	See exploration logs	53	23	30
*	2-B3@16	16	See exploration logs	31	19	12

	SAMPLE ID	TEST METHOD	REMARKS
A	2-B1@1.5	PI: ASTM D4318, Wet Method	
•	2-B3@16	PI: ASTM D4318, Wet Method	



CLIENT: Ridgeline Property Group, LLC

PROJECT NAME: Pacific Gateway
PROJECT NO: 19633.000.002 PH004

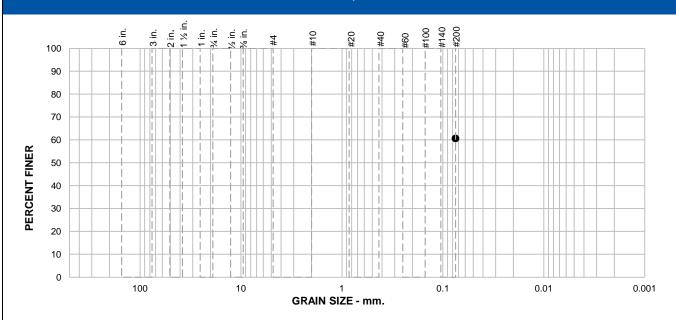
PROJECT LOCATION: Tracy, CA

REPORT DATE: 9/10/2024
TESTED BY: V. Nunez
REVIEWED BY: K. Lecce

SAMPLE ID: 2-B1@1.5

DEPTH (ft): LOCATION: 2-B1

0/ . 7 E ma r			% GR	AVEL				% SAND			% F	INES
% +75mr	n	COA	RSE	FIN	NE	COAR	SE	MEDIUM	FINE		SILT	CLAY
						0.5	,	2.6	13.4		35.2	48.3
SIEVE SIZE		CENT IER		CENT	PAS (X=	SS? NO)			SOIL DES See explor			
#4	10	0.0										
#10		9.5										
#20		3.3							ATTERBE	RG LIMITS		
#40	96	-				P	L = 23		LL = 53		PI = 30	
#60 94.3 #100 90.4 COEFFICIENTS												
#100						_	· 0 ·	1437 mm			D 0	0000
#140	87					ח	$V_{90} = 0.$	0025 mm	$D_{85} = 0.0863$) IIIIII		.0069 mm
#200	83	3.5					$b_{10} = 0.0$	0020 111111	$D_{30} = C_{u} =$		$D_{15} = C_{c} =$	
0.0276 mm.	78					ا	10 =		C _u =		C _c =	
0.0180 mm.	71	.3							CLASSIF	ICATION		
0.0107 mm.		5.5							USCS			
0.0077 mm.	61	.6							0000	,		
0.0055 mm.	56	8.8							REMA	ARKS		
0.0040 mm.	55	5.0					Silt/cl	ay division of 0.0	002mm used			
0.0033 mm.		3.2						ASTM D4318, W				
0.0028 mm.	50).9						USCS: ASTM D				
0.0020mm.												
0.0012mm.	47	7.1										
no specification	nrovido	4/										


CLIENT: Ridgeline Property Group, LLC

PROJECT NAME: Pacific Gateway

PROJECT NO: 19633.000.002 PH004

PROJECT LOCATION: Tracy, CA **REPORT DATE: 9/10/2024** TESTED BY: V. Nunez **REVIEWED BY:** K. Lecce

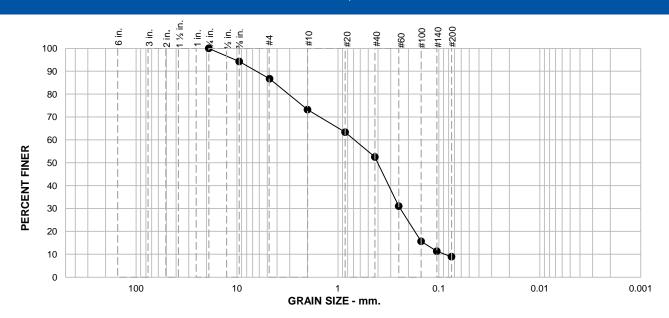
ASTM D1140, Method B

SAMPLE ID: 2-B4@16

DEPTH (ft): 16 **LOCATION:** 2-B4

CATION:	2-B4															
% +75mr	m	%	GRAVEL			% SAND		% FI	NES							
/0 T / JIIII		COARSE	FII	NE	COARSE	MEDIUM	FINE	SILT	CLAY							
								6	1							
SIEVE	PER	CENT	SPEC.*	PAS	SS?		SOIL DESCR									
SIZE	FIN	IER P	ERCENT	(X=	NO)		See explorati	on log								
#200	6	61														
							ATTERBERG	LIMITS								
					PL =		LL =	PI =								
COEFFICIENTS																
$D_{90} = D_{85} = D_{60} =$																
					D ₅₀ =		$D_{30} =$	$D_{15} =$								
					D ₁₀ =		C _u =	C _c =								
							CLASSIFICA									
							USCS =	•								
							REMAR	(S								
						USCS: ASTM D2	2487									
						Soak time = 180	min									
					Dry sample weight = 724.6 g											
					Lar	gest particle size ≥ N	lo. 4 Sieve									
o specificatio	n provided	d)														

ENGEO Expect Excellence


CLIENT: Ridgeline Property Group, LLC

PROJECT NAME: Pacific Gateway
PROJECT NO: 19633.000.002 PH004

PROJECT LOCATION: Tracy, CA

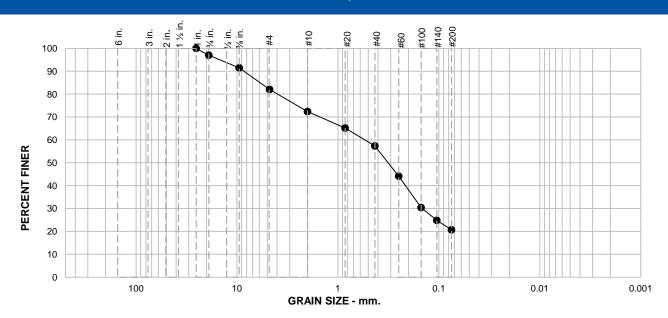
REPORT DATE: 9/9/2024 TESTED BY: J. Tarinda REVIEWED BY: K. Lecce

ASTM D6913, Method B

SAMPLE ID: 2-B5@10-11.5

DEPTH (ft): 10-11.5 LOCATION: 2-B5

% +75m	m	% GF	AVEL			% SAND		% F	INES
70 T7 31111		COARSE	FIN	NE	COARSE	MEDIUM	FINE	SILT	CLAY
			1:	3	14	20	44		9
SIEVE SIZE	PERO FIN		EC.* CENT	PAS (X=N			SOIL DESCRI See exploration		
0.75 in. 0.38 in.	10 94								
#4	8	7					ATTERBERG		
#10	7:				PL =		LL =	PI =	
#20	6:						COEFFICIE	NTS	
#40	5				$D_{00} = 6$	4002 mm	$D_{85} = 4.1979 \text{mn}$.6928 mm
#60 #100	3 [.] 10				$D_{50} = 0.$	3993 mm	$D_{30} = 0.2416 \text{mn}$.1397 mm
#100 #140	1.				$D_{10} = 0.$	0887 mm	$C_u = 7.81$	$C_c = 0$	
#200	9)					CLASSIFICA	ATION	
							USCS =	:	
							REMARK	(S	
						USCS: ASTM D	2487		


CLIENT: Ridgeline Property Group, LLC

PROJECT NAME: Pacific Gateway

PROJECT NO: 19633.000.002 PH004

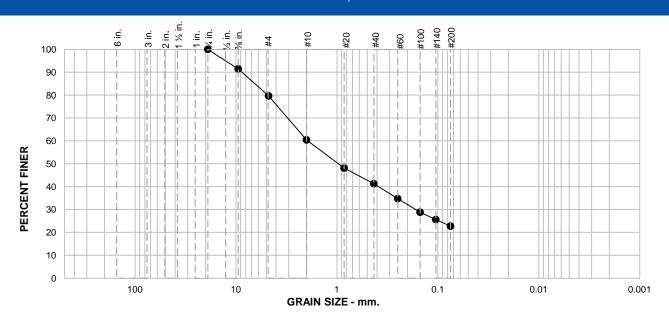
PROJECT LOCATION: Tracy, CA **REPORT DATE: 9/9/2024** TESTED BY: J. Tarinda **REVIEWED BY:** K. Lecce

ASTM D6913, Method B

SAMPLE ID: 2-B5@15-16.5

DEPTH (ft): 15-16.5 **LOCATION:** 2-B5

% +75mı	m	% GF	AVEL			% SAND		% F	INES			
/0 T / JIIII	"	COARSE	FIN	IE	COARSE	MEDIUM	FINE	SILT	CLAY			
		3	15	5	10	15	36	2	21			
SIEVE SIZE			EC.* CENT	PAS (X=t			SOIL DESCRI See exploration					
1 in. 0.75 in.	9											
0.38 in. 91 ATTERBERG LIMITS #4 82 PL = LL = PI =												
#4 #10		2			FL=		LL =	FI=				
#20	6						COEFFICIE					
#40 #60	5 4	4			$D_{90} = 8$ $D_{50} = 0$ $D_{10} = 0$.8164 mm .3211 mm	$D_{85} = 5.9899 \text{ mm}$ $D_{30} = 0.1500 \text{ mm}$ $C_{11} =$.5552 mm			
#100 #140	3	0 5			10			-				
#200	2						CLASSIFICA USCS =					
							REMARK	(S				
						USCS: ASTM D2	2487					
(no specification	n provided	d)										



CLIENT: Ridgeline Property Group, LLC

PROJECT NAME: Pacific Gateway
PROJECT NO: 19633.000.002 PH004

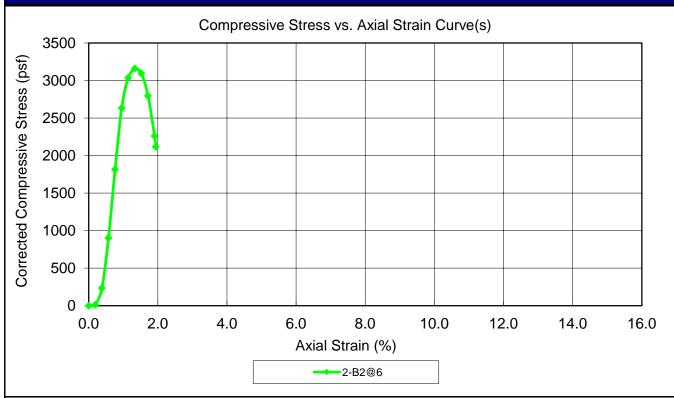
PROJECT LOCATION: Tracy, CA
REPORT DATE: 9/9/2024
TESTED BY: J. Tarinda
REVIEWED BY: K. Lecce

ASTM D6913, Method B

SAMPLE ID: 2-B6 @10-11.5

DEPTH (ft): 10-11.5 **LOCATION:** 2-B6

0/ .75	-	% G	RAVEL			% SAND		% F	INES
% +75m	m	COARSE	FII	NE	COARSE	MEDIUM	FINE	SILT	CLAY
			2	0	20	19	18	:	23
SIEVE SIZE	PER(EC.*	PAS (X=N			SOIL DESCRI See exploration		
0.75 in. 0.38 in.	10 9	00 2							
#4	8				51		ATTERBERG		
#10	6				PL =		LL =	PI =	
#20 #40	4						COEFFICIE	NTS	
#40 #60		5			$D_{90} = 8$.4821 mm	$D_{85} = 6.3474 \text{mn}$		2.0000 mm
#100		9			$D_{50} = 0$.9803 mm	$D_{30} = 0.1633 \text{mn}$		
#140	2	6			D ₁₀ =		$C_u =$	C _c =	
#200	2	3					CLASSIFICA	TION	
							USCS =		
							REMARK	(S	
						USCS: ASTM D			
o specificatio									


ENGEO

CLIENT: Ridgeline Property Group, LLC

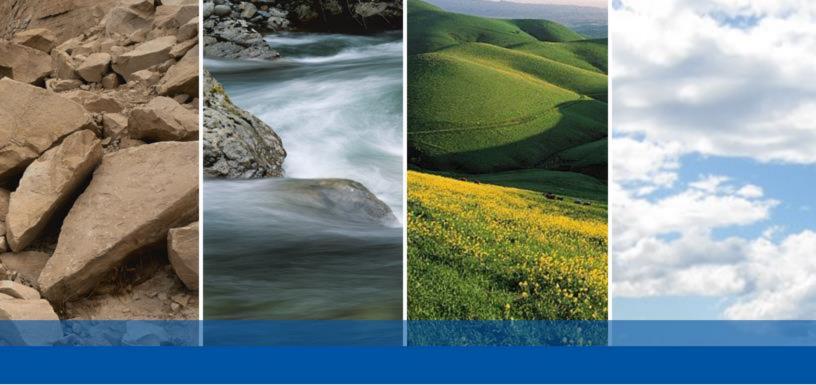
PROJECT NAME: Pacific Gateway
PROJECT NO: 19633.000.002 PH004

PROJECT LOCATION: Tracy, CA
REPORT DATE: 9/9/2024
TESTED BY: J. Tarinda
REVIEWED BY: K. Lecce

UNCONFINED COMPRESSION TEST REPORT (ASTM D2166)

## Description		SPECIMEN	
Dry Density (pcf) 109.9 Saturation (%) 59.3 Void Ratio 0.55 Diameter (in) 2.390 Height (in) 5.250 Height-To-Diameter Ratio 2.20 TEST DATA Unconfined Compressive Strength (psf) 3160 Undrained Shear Strength (psf) 1579.79 Strain Rate (in/min) 0.050 Specific Gravity (ASSUMED) 2.720 Strain at Failure(%) 1.33 Test Remarks SPECIMEN DESCRIPTION	BEFORE TEST	2-B5 @6	
Saturation (%) 59.3 Void Ratio 0.55 Diameter (in) 2.390 Height (in) 5.250 Height-To-Diameter Ratio 2.20 TEST DATA Unconfined Compressive Strength (psf) 3160 Undrained Shear Strength (psf) 1579.79 Strain Rate (in/min) 0.050 Specific Gravity (ASSUMED) 2.720 Strain at Failure(%) 1.33 Test Remarks SPECIMEN DESCRIPTION	Test Moisture Content (%)	11.89	
Void Ratio 0.55 Diameter (in) 2.390 Height (in) 5.250 Height-To-Diameter Ratio 2.20 TEST DATA Unconfined Compressive Strength (psf) 3160 Undrained Shear Strength (psf) 1579.79 Strain Rate (in/min) 0.050 Specific Gravity (ASSUMED) 2.720 Strain at Failure(%) 1.33 Test Remarks SPECIMEN DESCRIPTION	Dry Density (pcf)	109.9	
Diameter (in) 2.390 Height (in) 5.250 Height-To-Diameter Ratio 2.20 TEST DATA Unconfined Compressive Strength (psf) 3160 Undrained Shear Strength (psf) 1579.79 Strain Rate (in/min) 0.050 Specific Gravity (ASSUMED) 2.720 Strain at Failure(%) 1.33 Test Remarks SPECIMEN DESCRIPTION	Saturation (%)	59.3	
Height (in) 5.250 Height-To-Diameter Ratio 2.20 TEST DATA Unconfined Compressive Strength (psf) 3160 Undrained Shear Strength (psf) 1579.79 Strain Rate (in/min) 0.050 Specific Gravity (ASSUMED) 2.720 Strain at Failure(%) 1.33 Test Remarks SPECIMEN DESCRIPTION	Void Ratio	0.55	
Height-To-Diameter Ratio 2.20 TEST DATA Unconfined Compressive Strength (psf) 3160 Undrained Shear Strength (psf) 1579.79 Strain Rate (in/min) 0.050 Specific Gravity (ASSUMED) 2.720 Strain at Failure(%) 1.33 Test Remarks SPECIMEN DESCRIPTION	Diameter (in)	2.390	
TEST DATA Unconfined Compressive Strength (psf) 3160 Undrained Shear Strength (psf) 1579.79 Strain Rate (in/min) 0.050 Specific Gravity (ASSUMED) 2.720 Strain at Failure(%) 1.33 Test Remarks SPECIMEN DESCRIPTION	Height (in)	5.250	
Unconfined Compressive Strength (psf) 3160 Undrained Shear Strength (psf) 1579.79 Strain Rate (in/min) 0.050 Specific Gravity (ASSUMED) 2.720 Strain at Failure(%) 1.33 Test Remarks SPECIMEN DESCRIPTION	Height-To-Diameter Ratio	2.20	
Undrained Shear Strength (psf) 1579.79 Strain Rate (in/min) 0.050 Specific Gravity (ASSUMED) 2.720 Strain at Failure(%) 1.33 Test Remarks SPECIMEN DESCRIPTION	TEST DATA		
Strain Rate (in/min) 0.050 Specific Gravity (ASSUMED) 2.720 Strain at Failure(%) 1.33 Test Remarks SPECIMEN DESCRIPTION	Unconfined Compressive Strength (psf)	3160	
Specific Gravity (ASSUMED) 2.720 Strain at Failure(%) 1.33 Test Remarks SPECIMEN DESCRIPTION	Undrained Shear Strength (psf)	1579.79	
Strain at Failure(%) 1.33 Test Remarks SPECIMEN DESCRIPTION		0.050	
Test Remarks SPECIMEN DESCRIPTION	Specific Gravity (ASSUMED)	2.720	
SPECIMEN DESCRIPTION	Strain at Failure(%)	1.33	
	Test Remarks		
	SPECIMEN DESCRIPTION		
2-B5 @6 See exploration logs	2-B5 @6 See exploration logs		

ENGEO Expect Excellence


PROJECT NAME: Pacific Gateway

PROJECT NO: 19633.000.002 PH004

CLIENT: Ridgeline Logistics Group, LLC

Reviewed By: K. Lecce

LOCATION: Tracy, CA

APPENDIX C

PREVIOUS EXPLORATION LOGS AND LABORATORY TESTING RESULTS (ENGEO, 2021)

Geotechnical Feasibilty

Pacific Gateway

LOG OF BORING 1-B01

LATITUDE: 37.66022 DATE DRILLED: 11/15/2021

LONGITUDE: -121.397533

HOLE DEPTH: Approx. 20 ft. HOLE DIAMETER: 4.0 in.

LOGGED / REVIEWED BY: C. Johnson / SH DRILLING CONTRACTOR: West Coast Exploration DRILLING METHOD: Solid Flight Auger

		Tra	асу	c Gateway , California 3.000.001	HOLE DEPTH: Ap HOLE DIAMETER: 4.0 SURF ELEV (WGS84): Ap) in.				RILLII	NG MI	ΕΤΗΟ	D: Sol	est Coa lid Fligh) lb. Ro	t Aug	er	
	Depth in Feet	Elevation in Feet	Sample Type	DESC	RIPTION	Log Symbol	Water Level	Blow Count/Foot	Atter	Plastic Limit and	Plasticity Index	Fines Content (% passing #200 sieve)	Moisture Content (% dry weight)	Dry Unit Weight (pcf)	Shear Strength (psf) *field approximation	Unconfined Strength (tsf) *field approximation	Strength Test Type
	-	_		LEAN CLAY (CL), brown, plasticity, 10% fine- to coato coarse gravel Grades to yellowish brown	arse-grained sand, <5% fine			38								>4.5* >4.5*	PP PP
	5 — -	— 155 —		Grades to 15% fine- to co	arse-grained sand			7									
	_	 150		Grades to <5% fine- to co	arse-grained sand			9									
	10 —	_ _ _		Grades to 10% fine- to co	arse grained sand, very stiff			37								>4.5*	PP
Т 1/10/23	- 15 —	— 145 —		CLAVEV SAND (SC) val	lowish brown, medium dense,			22									
LOG - GEOTECHNICAL_SU+QU W/ ELEV 1-BS.GPJ ENGEO INC.GDT 1/1	20 —	 140 		moist, fine- to coarse-grai	ned sand, 20% fines			54									
L_SU+QU W/ ELEV 1-E					ximately 20 feet below ground encountered during drilling.												
LOG - GEOTECHNICAL																	

LOG OF BORING 1-B02

Geotechnical Feasibilty
Pacific Gateway
Tracy, California
19633 000 001

DATE DRILLED: 11/15/2021
HOLE DEPTH: Approx. 16½ ft.
HOLE DIAMETER: 4.0 in.
SURF ELEV (WGS84): Approx. 150 ft.

LATITUDE: 37.662131

LOGGED / REVIEWED BY: C. Johnson / SH
DRILLING CONTRACTOR: West Coast Exploration
DRILLING METHOD: Solid Flight Auger
HAMMER TYPE: 140 lb. Rope and Cathead

LONGITUDE: -121.39397

	19	63	3.000.001	SURF ELEV (WGS84): Ap	prox. 15	0 ft.			HA	MME	R TYP	E: 140) lb. Ro	pe an	d Cath	ıead
								Atter	berg L	imits					(-	
Depth in Feet	Elevation in Feet	Sample Type		RIPTION	Log Symbol	Water Level	Blow Count/Foot	Liquid Limit	Plastic Limit	Plasticity Index	Fines Content (% passing #200 sieve)	Moisture Content (% dry weight)	Dry Unit Weight (pcf)	Shear Strength (psf) *field approximation	Unconfined Strength (tsf) *field approximation	Strength Test Type
<u> </u>			LEAN CLAY (CL), dark by medium plasticity, <5% file	own, medium stiff, moist, ne to coarse gravel			18								3.25* 3.0*	PP PP
5 —	145		stiff, moist, low plasticity, sand, <5% fine gravel LEAN CLAY (CL), yellowi medium plasticity, 5% fine	40% fine- to coarse-grained			7								3.0	
+ + + +							37									
10 —	140		CLAYEY SAND (SC), yel moist, fine- to coarse-grai fine gravel	owish brown, medium dense, ned sand, 25% fines, <5%			20									
15 —	135		Grades to 40% fines, 10% gravel LEAN CLAY WITH SAND	(CL), yellowish brown, very			40									
			stiff, moist, medium plasti coarse-grained sand Bottom of boring at appro ground surface. Groundw drilling.	ximately 16 1/2 feet below ater not encountered during												

LOG OF BORING 1-B03

Geotechnical Feasibilty

Pacific Gateway Tracy, California 19633.000.001 DATE DRILLED: 11/15/2021 HOLE DEPTH: Approx. 17½ ft. HOLE DIAMETER: 4.0 in.

SURF ELEV (WGS84): Approx. 145 ft.

LATITUDE: 37.662157

LOGGED / REVIEWED BY: C. Johnson / SH
DRILLING CONTRACTOR: West Coast Exploration
DRILLING METHOD: Solid Flight Auger
HAMMER TYPE: 140 lb. Rope and Cathead

LONGITUDE: -121.391202

								Atter	berg L	imits					J)	
	Depth in Feet	Elevation in Feet	Sample Type	DESCRIPTION	Log Symbol	Water Level	Blow Count/Foot	Liquid Limit	Plastic Limit	Plasticity Index	Fines Content (% passing #200 sieve)	Moisture Content (% dry weight)	Dry Unit Weight (pcf)	Shear Strength (psf) *field approximation	Unconfined Strength (tsf) *field approximation	Strength Test Type
	-	_	Ņ	LEAN CLAY (CL), dark brown, moist, medium plasticity, 5% fine- to coarse-grained sand, <5% fine to coarse gravel LEAN CLAY WITH SAND (CL), yellowish brown, hard, moist, medium plasticity, 15% fine- to coarse-grained sand, <5% coarse gravel			30								>4.5*	PP
	5 — -	— 140 —		Grades to very stiff			25									
	10 —			Grades to hard, 5% fine- to coarse-grained sand Grades to 15% fine- to coarse-grained sand			68								>4.5*	PP
	-			POORLY GRADED SAND WITH CLAY (SP-SC), yellowish brown, medium dense to dense, moist, fine-to coarse-grained sand, 10% fines, 10% fine to coarse gravel			30									
3DT 1/10/23	15 — -	— 130 —		CLAYEY SAND (SC), yellowish brown, medium dense to dense, moist, fine- to coarse-grained sand, 40% fines POORLY GRADED SAND WITH CLAY AND GRAVEL			43								>4.5*	PP
LOG - GEOTECHNICAL_SU+QU W/ ELEV 1-BS.GPJ ENGEO INC.GDT 1/10/23				(SP-SC), yellowish brown, medium dense, moist, fine-to coarse-grained sand, 25% fine to coarse gravel, 5-10% fines LEAN CLAY (CL), yellowish brown, hard, moist, medium plasticity, <5% fine- to coarse-grained sand Bottom of boring at approximately 17 1/2 feet below ground surface. Groundwater not encountered during drilling.											74.0	rr

LOG OF BORING 1-B04

LATITUDE: 37.657422

LONGITUDE: -121.388672

Geotechnical Feasibilty
Pacific Gateway
Tracy, California
19633.000.001

DATE DRILLED: 11/15/2021 HOLE DEPTH: Approx. 19 ft. HOLE DIAMETER: 4.0 in. SURF ELEV (WGS84): Approx. 156 ft. LOGGED / REVIEWED BY: C. Johnson / SH
DRILLING CONTRACTOR: West Coast Exploration
DRILLING METHOD: Solid Flight Auger
HAMMER TYPE: 140 lb. Rope and Cathead

			0.000.001					Attor	berg L	imito						
								Allei	berg L		(e)			n)	(tsf)	
Depth in Feet	Elevation in Feet	Sample Type	DESCI	RIPTION	Log Symbol	Water Level	Blow Count/Foot	Liquid Limit	Plastic Limit	Plasticity Index	Fines Content (% passing #200 sieve)	Moisture Content (% dry weight)	Dry Unit Weight (pcf)	Shear Strength (psf) *field approximation	Unconfined Strength (tsf) *field approximation	Strength Test Type
	455		SANDY LEAN CLAY (CL), medium plasticity, 30% fine	dark brown, hard, moist, e- to coarse-grained sand												
_	— 155 —			(0)			24								>4.5* >4.5*	PP PP
-			moist, medium plasticity, 1 sand	(CL), yellowish brown, hard, 5% fine- to coarse-grained			24									
5 —	 150		LEAN CLAY (CL), yellowis medium plasticity, <5% fine	h brown, very stiff, moist, e- to coarse-grained sand												
-	_						16									
10 —																
-	— 145 —		Grades to hard, medium to coarse-grained sand	high plasticity, 5% fine- to			70								>4.5*	PF
-	_		SANDY LEAN CLAY (CL), moist, medium plasticity, 4 sand	yellowish brown, hard, 0% fine- to coarse-grained												
15 —	140						38									
_	— 140 —		LEAN CLAY (CL), yellowis medium to high plasticity.	h brown, hard, moist, <5% fine- to coarse-grained												
_			sand	·			68								>4.5*	PF
			Bottom of boring at approx surface. Groundwater not e	imately 19 feet below ground encountered during drilling.												

Geotechnical Feasibilty

Pacific Gateway

LOG OF BORING 1-B05

LATITUDE: 37.661565

DATE DRILLED: 11/15/2021 HOLE DEPTH: Approx. 201/2 ft. LOGGED / REVIEWED BY: C. Johnson / SH DRILLING CONTRACTOR: West Coast Exploration DRILLING METHOD: Solid Flight Auger

LONGITUDE: -121.375773

		Tra	асу	c Gateway , California 3.000.001	HOLE DEPTH: Ap HOLE DIAMETER: 4.0 SURF ELEV (WGS84): Ap) in.				RILLI	NG MI	ETHO	D: Sol	est Coa id Fligh) lb. Ro	ıt Aug	er	
	Depth in Feet	Elevation in Feet	Sample Type		RIPTION	Log Symbol	Water Level	Blow Count/Foot	Liquid Limit	Plastic Limit a	Plasticity Index	Fines Content (% passing #200 sieve)	Moisture Content (% dry weight)	Dry Unit Weight (pcf)	Shear Strength (psf) *field approximation	Unconfined Strength (tsf) *field approximation	Strength Test Type
	- 1	— — 125		LEAN CLAY (CL), dark bit plasticity, 5% fine- to coal	own, stiff, moist, medium se-grained sand												
	- 5 —	_		LEAN CLAY WITH SANE moist, medium plasticity, sand	(CL), yellowish brown, stiff, 15% fine- to coarse-grained			13									
	-	— — 120 —), yellowish brown, very stiff, 0% fine- to coarse-grained			25									
	10 —	_		LEAN CLAY WITH SAND very stiff, moist, medium coarse-grained sand	(CL), dark yellowish brown, olasticity, 15% fine- to			22									
	- -	— 115 —		LEAN CLAY (CL), dark ye moist, medium plasticity, sand	ellowish brown, very stiff, <5% fine- to coarse-grained			26									
.GDT 1/10/23	15 — - -	 110		moist, fine- to coarse-grain	lowish brown, medium dense, ned sand, 35% fines sh brown, very stiff, moist,			27									
PJ ENGEO INC	-	_		medium plasticitý, 5% fin	e- to coarse-grained sand			25									
LOG - GEOTECHNICAL_SU+QU W/ ELEV 1-BS.GPJ ENGEO INC.GDT 1/1	20 —			low plasticity, 35% fine- to Bottom of boring at appro	e coarse-grained sand ximately 20 1/2 feet below ater not encountered during			18									
LOG - GEOTECH																	

Pacific Gateway

Tracy, California

LOG OF BORING 1-B06

Expect Excellence LATITUDE: 37.660573

Geotechnical Feasibilty DATE DRILLED: 11/15/2021

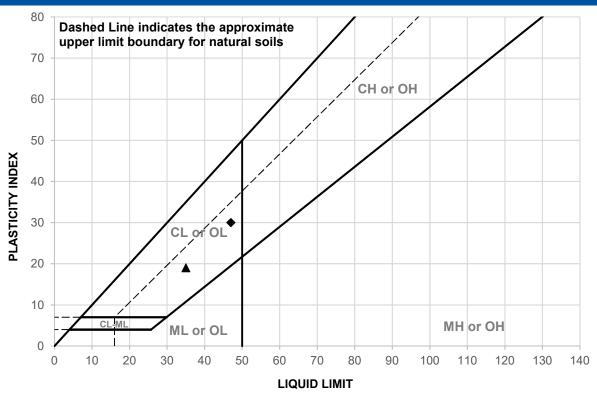
DATE DRILLED: 11/15/2021 HOLE DEPTH: Approx. 15 ft. HOLE DIAMETER: 4.0 in. LOGGED / REVIEWED BY: C. Johnson / SH
DRILLING CONTRACTOR: West Coast Exploration
DRILLING METHOD: Solid Flight Auger

LONGITUDE: -121.371652

				3.000.001	SURF ELEV (WGS84): Ap	prox. 12	9 ft.			HA	MMEF	R TYP	E: 140	lb. Ro	pe an	d Cath	ead
	Depth in Feet	Elevation in Feet	Sample Type	DESC	CRIPTION	Log Symbol	Water Level	Blow Count/Foot	Atter	Plastic Limit ad	Plasticity Index	Fines Content (% passing #200 sieve)	Moisture Content (% dry weight)	Dry Unit Weight (pcf)	Shear Strength (psf) *field approximation	Unconfined Strength (tsf) *field approximation	Strength Test Type
	5 —	125 120 115		Grades to 35% medium- Grades to 20-30% fine- to POORLY GRADED SANI yellowish brown, medium coarse-grained sand, 10%	to coarse-grained sand D WITH CLAY (SP-SC), dense, moist, fine- to		^	7 10 14	7	4	H H		V V		0.7 *	*	
LOG - GEOTECHNICAL_SU+QU W/ ELEV 1-BS.GPJ ENGEO INC.GDT 1/10/23	15 —			Bottom of boring at appro	ximately 15 feet below ground encountered during drilling.												

ENGEO — Expect Excellence—		TEST PIT LOG	
Pacific Gateway Tracy, California 19633.000.001		Logged By: Jason Sedore Logged Date: November 11, 2021	
Test Pit Number	Depth (feet)	Description	
1-TP01	0 – 3	FAT CLAY (CH), dark grayish brown, hard (Pocket Penetrometer >4.5 tsf at 2 feet), moist, high plasticity, <15% fine- to medium-grained sand, contains gravel	
		Bottom of test pit at approximately 3 feet below ground surface. No groundwater encountered during excavation.	
1-TP02	0 - 1½	LEAN CLAY WITH SAND (CL), dark grayish brown mottled with brown, very stiff (Pocket Penetrometer = 3.5 tsf at 1 foot), moist, medium to high plasticity, 15-25% fine- to medium-grained sand, contains silt fines and gravel	
	1 ½ - 3	FAT CLAY (CH) very dark grayish brown, hard (Pocket Penetrometer >4.5 tsf at 2 feet), moist, high plasticity, <15% fine-grained sand	
		Bottom of test pit at approximately 3 feet below ground surface. No groundwater encountered during excavation.	
1-TP03	0 - 2	FAT CLAY (CH), very dark brown mottled with yellowish brown, hard (Pocket Penetrometer = 4.0 tsf at 1 foot), moist, high plasticity, <15% fine-grained sand [Undocumented Fill]	
	2 – 3	FAT CLAY (CH), very dark brown, hard, moist, high plasticity, <15% fine-grained sand [Native]	
		Bottom of test pit at approximately 3 feet below ground surface. No groundwater encountered during excavation.	
1-TP04	0 – 6	SANDY LEAN CLAY (CL), grayish brown, hard (Pocket Penetrometer >4.5 tsf), moist, medium plasticity, 30-40% finegrained sand, contains fine gravel	
		Grades to brown, low to medium plasticity, contains silt fines at 3½ feet	
		Grades to yellowish brown to brown, contains carbonates at 4½ feet	
		Bottom of test pit at approximately 6 feet below ground surface. No groundwater encountered during excavation.	

EVGEO — Expect Excellence—		TEST PIT LOG
Pacific Gateway Tracy, California 19633.000.001		Logged By: Jason Sedore Logged Date: November 11, 2021
Test Pit Number	Depth (feet)	Description
1-TP05	0 – 3	SANDY LEAN CLAY (CL), dark grayish brown, medium to high plasticity, 30-40% fine-grained sand, <10% fine to coarse gravel, contains cobbles
	3 – 5½	SILTY GRAVEL WITH SAND (GM), brown, dense to very dense, moist, fine to coarse, subangular to to subrounded gravel, 25-35% fine- to coarse-grained sand, 15-20% fines, contains cobbles
		Bottom of test pit at approximately 5½ feet below ground surface. No groundwater encountered during excavation.
1-TP06	0 – 4	FAT CLAY (CH), very dark grayish brown, hard (Pocket Penetrometer >4.5 tsf), moist, high plasticity, <15% fine-grained sand
		Grades to brown, contains carbonates at 3 feet
	4 – 5	LEAN CLAY (CL), brown, very stiff to hard, moist, medium plasticity, <15% fine-grained sand, contains silt fines and carbonates
	5 – 5½	SANDY LEAN CLAY (CL), brown to yellowish brown, moist, medium plasticity, 30-40% fine-grained sand, contains silt fines
		Bottom of test pit at approximately 5½ feet below ground surface. No groundwater encountered during excavation.
1-TP07	0 - 3/3	SANDY LEAN CLAY (CL), dark brown with strong brown, hard, moist, medium plasticity, 30-40% fine- to coarse-grained sand, contains debris [Undocumented Fill]
	2/3 - 21/2	FAT CLAY (CH), brown mottled with grayish brown, hard (Pocket Penetrometer >4.5 tsf), moist, high plasticity, <15% fine-grained sand [NATIVE]
	2½ – 4	LEAN CLAY WITH SAND (CL), brown, very stiff (Pocket Penetrometer = 3.5 to 4.0 tsf), moist, medium plasticity, 15-25% finegrained sand, contains silt fines
	4 – 6½	SANDY LEAN CLAY (CL), brown, very stiff (Pocket Penetrometer = 3.75 to 4.0 tsf), moist, medium plasticity, 30-40% fine-grained sand, contains silt fines
		Bottom of test pit at approximately 6½ feet below ground surface. No groundwater encountered during excavation.


ENGEO — Expect Excellence—		TEST PIT LOG
Pacific Gateway Tracy, California 19633.000.001		Logged By: Jason Sedore Logged Date: November 11, 2021
Test Pit Number	Depth (feet)	Description
1-TP08	0 – 1	FAT CLAY WITH SAND (CH), very dark grayish brown, very stiff (Pocket Penetrometer = 3.5 to 4.0 tsf), moist, high plasticity, <15% fine-grained sand, <15% fine gravel [Undocumented Fill]
	1 – 4	FAT CLAY (CH), very dark brown to very dark grayish brown, very stiff (Pocket Penetrometer = 3.0 tsf), moist, high plasticity, <15% fine-grained sand [Native]
		Grades to hard at 3½ feet (Pocket Penetrometer >4.5 tsf)
	4 – 5	LEAN CLAY WITH SAND (CL), brown, hard (Pocket Penetrometer >4.5 tsf), moist, medium to high plasticity, 15-25% fine-grained sand
	5 – 6½	SANDY LEAN CLAY (CL), brown to yellowish brown, moist, medium plasticity, 30-40% fine-grained sand, contains silt fines and carbonates
		Bottom of test pit at approximately 6½ feet below ground surface. No groundwater encountered during excavation.
1-TP09	0 – ½	SANDY LEAN CLAY (CL), dark grayish brown, hard (Pocket Penetrometer >4.5 tsf), moist, medium plasticity, 30-40% fine- to coarse-grained sand, contains gravel [Undocumented Fill]
	1/2 - 41/2	SANDY LEAN CLAY (CL), dark grayish brown, hard (Pocket Penetrometer 4.0 to 4.5 tsf), moist, medium plasticity, 30-40% finegrained sand, contains silt fines
		Graded to brown, very stiff (Pocket Penetrometer = 3.0 tsf), contains carbonates at 4 feet
		Bottom of test pit at approximately 4½ feet below ground surface. No groundwater encountered during excavation.

ENGEO Expect Excellence		TEST PIT LOG
Pacific Gateway Tracy, California 19633.000.001		Logged By: Jason Sedore Logged Date: November 11, 2021
Test Pit Number	Depth (feet)	Description
1-TP10	0 - 3/4	FAT CLAY WITH SAND (CH), dark brown, hard (Pocket Penetrometer >4.5 tsf), moist, high plasticity, 10-20% fine- to medium-grained sand, <10% fine gravel
	3/4 - 31/2	FAT CLAY (CH), dark brown mottled with brown, hard (Pocket Penetrometer >4.5 tsf), moist, high plasticity, <15% fine-grained sand, contains carbonates
	3½ – 4	SANDY LEAN CLAY (CL), brown, hard (Pocket Penetrometer >4.5 tsf), moist, medium plasticity, 30-40% fine-grained sand
	4 – 5	SILTY SAND (SM), brown, moist, fine-grained sand, 25-35% fines
		Bottom of test pit at approximately 5 feet below ground surface. No groundwater encountered during excavation.
1-TP11	0 – 1	FAT CLAY WITH SAND (CH), dark grayish brown, very stiff to hard (Pocket Penetrometer = 4.0 to 4.5 tsf), moist, high plasticity, <15% fine- to coarse-grained sand, 5-10% fine gravel [UNDOCUMENTED FILL]
	1 – 2	FAT CLAY (CH), dark grayish brown, very stiff to hard (Pocket Penetrometer = 4.0 tsf), moist, high plasticity, <15% fine- to coarse-grained sand [NATIVE]
	2 – 3½	LEAN CLAY WITH SAND (CL), brown mottled with dark brown, very stiff to hard (Pocket Penetrometer = 3.5 to 4.5 tsf), moist, 15-25% fine-grained sand, contains silt fines
	3½ – 5	SANDY LEAN CLAY (CL), yellowish brown, hard (Pocket Penetrometer >4.5 tsf), moist, medium plasticity, 30-40% finegrained sand, contains silt fines and carbonates
		Bottom of test pit at approximately 5 feet below ground surface. No groundwater encountered during excavation.

ENGEO — Expect Excellence —		TEST PIT LOG
Pacific Gateway Tracy, California 19633.000.001		Logged By: Jason Sedore Logged Date: November 11, 2021
Test Pit Number	Depth (feet)	Description
1-TP12	0 – 2	SANDY LEAN CLAY (CL), brown to grayish brown, hard (Pocket Penetrometer >4.5 tsf), moist, medium plasticity, 30-40% fine- to coarse-grained sand, <10% gravel [UNDOCUMENTED FILL]
	2 – 4½	SANDY LEAN CLAY (CL), brown to grayish brown, hard (Pocket Penetrometer >4.5 tsf), moist, medium plasticity, 30-40% fine- to medium-grained sand, trace gravel [NATIVE]
		Grades to brown with silt fines at 3¾ feet
		Bottom of test pit at approximately 4½ feet below ground surface. No groundwater encountered during excavation.
1-TP13	0 – 1	FAT CLAY (CH), very dark brown, hard (Pocket Penetrometer >4.5 tsf), moist, high plasticity, <15% fine- to coarse-grained sand, trace gravel [UNDOCUMENTED FILL]
	1 – 2	FAT CLAY (CH), very dark brown, hard (Pocket Penetrometer >4.5 tsf), moist, high plasticity, <15% fine- to coarse-grained sand, trace gravel [NATIVE]
	2 – 5	LEAN CLAY (CL), yellowish brown, very stiff to hard (Pocket Penetrometer = 3.0 to 4.0 tsf), moist, medium plasticity, contains carbonates
		Grades to brown at 4 feet
		Bottom of test pit at approximately 5 feet below ground surface. No groundwater encountered during excavation.
1-TP14	0 – 5	LEAN CLAY (CL), dark brown, moist, medium plasticity, <5% fine- to coarse-grained sand
		Grades to dark yellowish brown at 21/2 feet
	5 – 7	SANDY SILT (ML), yellowish brown, moist, low plasticity, 20-30% fine- to coarse-grained sand
		Bottom of test pit at approximately 7 feet below ground surface. No groundwater encountered during excavation.

ENGEO — Expect Excellence —		TEST PIT LOG
Pacific Gateway Tracy, California 19633.000.001		Logged By: Jason Sedore Logged Date: November 11, 2021
Test Pit Number	Depth (feet)	Description
1-TP15	0 – 5½	LEAN CLAY (CL), dark brown, moist, medium plasticity, <5% fine- to coarse-grained sand
		Grades to dark yellowish brown, 10% fine- to coarse-grained sand at 3½ feet
	5½ – 8	SANDY SILT (ML), yellowish brown, moist, low plasticity, 30-40% fine- to coarse grained sand
		Bottom of test pit at approximately 8 feet below ground surface. No groundwater encountered during excavation.

LIQUID AND PLASTIC LIMITS TEST REPORT ASTM D4318

SAMPLE ID	DEPTH (ft)	MATERIAL DESCRIPTION	LL	PL	PI
1-TP09 @ 1'	1 foot	See exploration logs	35	16	19
1-TP13 @ 1'	1 foot	See exploration logs	47	17	30

SAMPLE ID	TEST METHOD	REMARKS
1-TP09 @ 1'	PI: ASTM D4318, Wet Method	
1-TP13 @ 1'	PI: ASTM D4318, Wet Method	

CLIENT: Ridgeline Property Group

PROJECT NAME: Pacific Gateway


PROJECT NO: 19633.000.001 PH001

PROJECT LOCATION: Tracy, CA

REPORT DATE: 11/18/2021

TESTED BY: D. Bryant

REVIEWED BY: K. Lecce

